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I. Introduction 

Empirical studies of market activities draw on an elegant and coherent body of theory 

that describes household and firm interactions in the market place.  Price taking households 

purchase goods produced by firms that compete to maximize profits under a variety of market 

power conditions.  Theory provides behavioral predictions for households and firms as well as 

statements about how the aggregation of this behavior results in equilibrium price and quantity 

outcomes.  Models of general equilibrium rely on this link between individual behavior and 

aggregate outcomes to describe how exogenous changes lead to both direct and indirect effects in 

price and quantity space.  Often it is the indirect, or feedback effects, that are the most interesting 

in market studies.  A variety of empirical and calibration techniques have been developed in 

economics to study these effects.  The modern empirical IO literature focusing on particular 

industries provides a good example of the former while CGE models of whole sectors of the 

economy provide good examples of the latter.  In both cases the emphasis is on modeling and 

understanding equilibrium outcomes in price and quantity space. 

The story is quite different in studies of non-market goods and activities that are typically 

employed by environmental economists for purposes of non-market valuation.  By definition 

non-marketed goods are not exchanged in markets, and therefore one cannot speak of 

equilibrium prices and quantities for the goods per se.  Instead the emphasis is usually on 

understanding preferences in a partial equilibrium framework for a quasi fixed level of a public 

good.  For this purpose an impressive array of structural econometric models has been developed 

that are capable of predicting individuals’ valuations for exogenous changes in the level of the 

public good.  For example, recreation demand modelers use increasingly sophisticated models of 

quality differentiated demands to understand how recreation site attributes affect behavior and 
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well-being.  Hedonic property value models use ever increasing levels of spatially resolute data 

to parse out the contribution of a local public good to housing prices.  Although the latter models 

make use of equilibrium concepts to motivate estimation, they rarely are capable of predicting 

feedback effects from large-scale changes in public good levels.  Thus, with few exceptions, it 

seems reasonable to say that non-market valuation has focused primarily on partial equilibrium 

analysis of the interactions between behavior and quasi-fixed levels of environmental quality.1 

This emphasis is probably reasonable in general.  Empirical models of behavior that use 

measurable environmental quality as explanatory variables usually find effects that are of second 

order importance relative to non-environmental factors.  For example, ambient water quality in 

recreation demand models is usually much less important in explaining water site choice and 

visitation frequency than travel cost.  Likewise, structural characteristics tend to explain much 

more of the variability in housing prices than does air quality in hedonic property value models.  

As we describe more fully below, water quality and air quality in these contexts are examples of 

non-price attributes that we might reasonably suppose to be exogenous to the behavior that we 

are attaching to them.  In contrast, the levels of other types of attributes – such as congestion or 

angler catch rates in recreation models, or traffic levels in residential location choice models –are 

at least partially determined by the aggregation of behavior under analysis.  We might therefore 

wonder if there are situations in which general equilibrium feedback effects in endogenous 

attribute space might be empirically important in non-market valuation.  This might be 

particularly so for a large-scale policy intervention that substantially changes the level and 

spatial distribution of environmental quality.  In this paper we begin to consider the extent to 

                                                 
1 There are some notable exceptions that have appeared recently in the literature, including the equilibrium sorting 
models of Smith et al. (2004), Timmins (2003), Timmins and Murdock (2006), and Bayer, Keohane and Timmins 
(2006). These papers are discussed in further detail below.  
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which non-price equilibriums and feedback effects can be identified and accounted for 

conceptually and in empirical non-market valuation studies. 

To examine this question we proceed as follows.  We begin by providing a descriptive 

overview of how we will think about the concept of ‘non-price equilibriums’ in non-market 

valuation.  We suggest working definitions of two general types of non-price equilibriums and 

offer context and motivation by linking these definitions to specific examples and existing 

literature inside and outside of environmental economics.  We then turn to study a specific type 

of non-price endogenous attribute:  congestion in recreation demand models.  We do this using 

both computable general equilibrium (CGE) and econometric models.  We begin by using a CGE 

model to explore analytically situations when partial and general equilibrium welfare measures 

might be different and under what circumstances it might be important to consider non-price 

feedback effects in actual empirical non-market valuation models.  We then consider an 

empirical model of recreation demand that explicitly includes site congestion as an explanatory 

variable, accounts for its econometric endogeneity, and allows computation of both partial and 

general equilibrium welfare measures.  We apply this model to the demand for visits to lakes in 

Iowa and consider the role of water quality measures and site congestion in counterfactual 

welfare simulations. 

With the three components of this paper we provide three contributions that are in the 

spirit of the ‘frontiers’ theme of this conference.  First, we lay out a research agenda that is 

motivated by the notion that large scale policy interventions might lead to feedback effects in 

non-price variables similar to the types that have only just begun to be considered empirically in 

price space via the new classes of sorting models.  Second, we make use of both CGE and 

econometric modeling approaches to analyze the feedbacks problem and demonstrate how these 
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quite different tools can shed light on the same problem from different angles.  Since the 

behavior we are interested in is characterized by both intensive and extensive margin decisions 

both modeling approaches must admit binding non-negativity constraints.  Thus a second 

contribution of this work is the further development of CGE and econometric models that are 

flexible, tractable, and provide realistic and internally consistent representations of the behavior 

we are modeling.  In the case of the CGE model this involves creative new solution algorithms; 

in the case of the econometric model this involves the use of contemporary simulation-based 

econometrics and instrumental variables techniques.  The final contribution involves the 

application to recreation visits to IA lakes and accounting for congestion in the model, an 

important attribute in recreation demand that is almost always absent in revealed preference 

demand studies.  These three contributions not withstanding, we stress that this effort is a first, 

rather than the final, step in this area of inquiry.  As such we discuss throughout the 

simplifications and assumptions we have made and how these motivate topics for further 

research. 

II. Conceptual Overview  

To ground our discussion of non-price equilibriums we consider the following behavioral 

setup.  Agents in a closed economy maximize an objective function by choosing levels of 

activities that are defined by both price and a set of non-price attributes.  In the case of 

consumers the activities are demands for quality-differentiated goods; in the case of firms we can 

think of them as derived demands for quality-differentiated factor inputs.  For the remainder of 

this discussion we use terminology corresponding to the consumer’s problem, although we will 

also provide examples that correspond to firm’s behavior.  Households consume the quality 

differentiated goods in non-negative quantities and can, at the optimum, be at a corner solution 
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for a subset of the goods in the choice set.  The set of non-price attributes that describe the goods 

in the choice set can be divided into two types:  those that are exogenously determined and those 

that are at least partially determined by the actions of individuals in the model.  We refer to the 

latter as endogenously determined attributes.  We are ultimately interested in understanding the 

extent to which the levels of endogenous attributes might change in response to exogenous or 

policy shocks, and what the resulting differences are between partial and general equilibrium 

welfare measures for policy interventions. 

This general setup can be better understood by adding a few specific examples.  The most 

obvious case is when the quality differentiated goods are trips to recreation sites, say a set of 

lakes.  The demand for trips depends on individual travel costs as well as attributes of the 

recreation sites.  Attributes such as the presence of boat ramps, picnic facilities, and perhaps 

ambient water quality are exogenous to the decision process.  In contrast, congestion at the 

recreation sites is determined by the aggregate visitation decisions of the people in the economy 

and is therefore an endogenous attribute.  Similarly, angling catch rates for sport fish species at 

the lakes are determined not only by existing bio-physical conditions, but also by the spatial and 

temporal distribution of anglers’ fishing effort.  Policy interventions such as water quality 

improvements, facility improvements, or fish stocking programs might have direct welfare 

effects as well as indirect effects that play through via the re-equilibrating of congestion and 

catch rate attributes that change due to people’s changed visitation patterns. 

A second example is the choice of residential location, which conveys a bundle of market 

and non-market services.  Exogenous attributes in the bundle include characteristics of the 

structure and distance to natural features such as lakes.  Endogenous attributes might include 

traffic congestion and the resulting local air quality impacts, privately held open space, and 
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publicly held open space created by local governance.  This latter attribute is related to other 

endogenous attributes that have more of a public finance or urban economic flavor, such as local 

school quality and the racial makeup of neighborhoods.  We return to this below as examples of 

topics outside environmental economics in which empirical work on non-price equilibriums has 

advanced.  

A final example comes from commercial fisheries.  Vessel operators choose the timing 

and location of harvest effort that gives rise to an aggregate distribution of effort in much the 

same way that congestion is determined in a recreation model.  This effort, in combination with 

the biological system, gives rise to equilibrium populations for the targeted species as well as 

equilibrium levels of spatially and temporally distributed catch effort. 

Based on these examples, we define two general types of non-price equilibriums that can 

occur in environmental economics applications.  The first case we refer to generically as a simple 

sorting equilibrium.  In this case levels of endogenous non-price attributes are determined only 

by interactions between agents.  Among the examples mentioned this class includes congestion 

in recreation applications and more generally social interaction outcomes such as racial mixing 

and peer effects in schools.  In these cases the equilibrium outcomes are determined only by the 

interactions/feedbacks among agents.  This is in contrast to the second type of non-price 

equilibrium that we define which we label a complex sorting equilibrium.  This refers to 

situations in which the agents interact with a quasi-supplier of environmental conditions, which 

will often be the natural environment, to determine the equilibrium.  Among the examples we 

have mentioned recreation fishing catch rates fall into this class.  Here the natural environment 

(via population dynamics and available habitat) provides the stock of fish while anglers’ 

aggregate distribution of trips and catch effort provides the level of stock exploitation.  The 
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interaction results in equilibrium catch rate levels and fish populations.  Educational outcomes in 

public finance applications are similarly complex sources of sorting equilibrium.  Here the 

sorting behavior of households into school districts determines peer effects, while district 

funding levels (also partially determined by sorting behavior if there is local control of schools) 

determine teacher and facility quality.  Together these factors determine educational outcomes. 

In defining non-price equilibriums we have thus far tried to be fairly general, but it is 

clear that this can only be taken so far.  Unlike price and quantity equilibriums for homogenous 

goods, for which theory provides quite general results, non-price equilibriums for quality 

differentiated goods are by definition context specific.  The challenge for applied welfare 

analysis is to characterize conceptually and empirically the particulars of the equilibrium of 

interest.  Simple sorting equilibria seem easier to deal with than their complex counterparts in 

that for the former the analyst need only specify the mechanism through which agents interact, 

while for the latter agent interactions a production function and the relationship between the two 

must be specified.  Nonetheless there are relatively few examples of applied work dealing with 

either type of non-price equilibrium. 

III. Literature Review 

Concerns regarding equilibrium sorting on the basis of endogenous quality attributes are 

not new to the literature, though they have typically taken a back seat to sorting driven by market 

price movements. Schelling (1978) provides one of the earlier discussions of non-price sorting, 

illustrating qualitatively how non-market adjustments might lead to surprising equilibrium 

outcomes, most notably, perhaps, in the context of racial segregation.  More recently, there have 

been efforts to estimate and calibrate CGE models driven by exogenous and endogenous quality 

attributes. Ferreyra (2006), for example, examines the general equilibrium impacts of school 
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voucher programs, with households sorting on the basis of both location and school quality. 

Private and public school quality are determined in equilibrium by the composition of 

households within a district. The parameters of the model are estimated using school district, 

rather than household, level data on income, rental values, etc. However, household level 

preference heterogeneity is allowed for in the general equilibrium simulations by assuming a 

distribution of individual agents in the population with varying preferences for school quality 

and religious affiliation. 

Within the environmental literature, there are three broad strands of research related to 

the current paper. The first strand is the locational equilibrium sorting literature exemplified by 

work of Smith, et al. (2004), which in turn draws on the work of Epple and Sieg (1999) and 

Epple, Romer and Sieg (2001). The authors, in this case, examine the equilibrium effects from an 

exogenous change in air quality stemming from reduced ozone levels. Sorting then occurs on the 

basis of preferences for housing, education and air quality, estimated using all individual home 

sales records for the L.A. Air Basin between 1989 and 1991. The authors find that accounting for 

the GE responses to the air quality changes can substantially alter the implied benefits from 

ozone reductions in the region, particularly for specific counties within the basin. 

The second strand of literature related to the current paper includes the locational sorting 

models developed by Bayer and Timmins (2005,2006) and applied to environmental issues by 

Bayer, Keohane, and Timmins (2006), Timmins and Murdock (2006), and O’Hara (2006). The 

distinguishing feature of the Bayer and Timmins approach is that they allow the quality 

characteristic of interest to be determined endogenously. For example, in Timmons and Murdock 

(2006), the authors allow for recreational site quality to be determined in part by the level of 

congestion at the site. A two-stage estimation process is used to estimate a random utility 
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maximization (RUM) model of site selection as a function of travel costs and congestion, while 

controlling for the endogeneity of congestion. The authors find that ignoring congestion effects 

can substantially underestimate the value of a lake. While we employ a similar two-stage 

approach for estimating the impact of congestion on site preferences, the current work is differs 

from that of Timmons and Murdoch (2006) in that we model not only site selection, but also the 

intensity of usage (i.e., numbers of trips) for each site and employ a Kuhn-Tucker dual modeling 

structure rather than the RUM framework. 

Finally, Massey, Newbold and Gentner (2006) examine the impact of water quality 

improvements on recreational fishing in Maryland’s costal bays. The unique feature of their 

analysis is that, while they consider only exogenous water quality changes, these changes impact 

recreational fishing indirectly through a bio-economic model of the coastal fishery. Their 

approach of explicitly modeling the dynamic evolution of fish stock in response to water quality 

changes provides a natural starting point in considering the sort of complex sorting discussed in 

the previous section in which endogenous attributes such as visitation rates or other measures of 

congestion interact with biological conditions at the site to determined site attributes of interest 

to recreationists, such as fish catch rates. 

IV. CGE Modeling 

Our objective for the CGE component of the analysis is to explore the analytics of the 

problem we are considering and to begin to understand the situations in which non-price 

feedback effects might be empirically important. To this end consider the following general 

model of behavior. There are I consumers in the economy, each of whom maximizes utility by 

choosing visits to a set of recreation sites and the level of spending on all other goods. The 

problem is given analytically by 
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,

max ( , ; ) . . , 0, 1,..., ,
i i

i i i i i i i i ijz x
U U z x Q s t p z x y z j J′= + ≤ ≥ =  (1) 

where Ui is the utility index for person i, xi is the level of spending on non-recreation goods, zi is 

a J-dimension vector of visits to the J available recreation sites, Q is a MxJ matrix of recreation 

site attributes where M is the number of attributes, pi is the vector of person-specific travel costs, 

and yi denotes the person’s income. Some or all of the quality attributes in the model may be 

endogenously determined by the level of visitation at a given site. Thus we say that qmj = qmj(zj) 

is the attribute transmission function where qmj denotes an individual element of the quality 

matrix Q and zj is the I-dimensional vector of trips by people in the economy to site j. 

Individuals take site quality as given in solving their optimization problem, so their first-order 

conditions are: 

 
( , ; ) / ( , ; ) /

, 0, 0, 1,..., .
( , ; ) / ( , ; ) /

i i i ij i i i ij
j ij j ij

i i i i i i i i

U z x Q z U z x Q z
p z p z j J

U z x Q x U z x Q x
∂ ∂ ∂ ∂⎡ ⎤

≤ − = ≥ =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
 (2) 

Equilibrium in this model is characterized by the simultaneous solution to a system of 

equations/inequalities and their associated complementary slackness relationships that 

corresponds to:  

 The first-order conditions described by (2) for all individuals i = 1,…,I 

 The quality attribute transmission functions qmj(zj), for all sites and attributes j = 1,…,J 

and m = 1,…,M.   

A further generalization of this framework that might be of interest would allow for 

regime switching in the determination of the effective quality levels at different sites as well. 

Suppose for example that one site attribute is fishing catch rate. If the use of the site became 

intense enough (or ambient water quality bad enough) as to drive the catch rate to zero, then we 

effectively are at a corner in the site attribute space. This is easy to accommodate in our 
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framework: simply define complementary slackness relationships for the quality definitions in 

the attribute transmission functions. For example, the attribute transmission condition might take 

the form 

 ( ); ( ) 0; 0.mj mj j mj mj mj j mjq q z q q q z q≥ − = ≥⎡ ⎤⎣ ⎦  (3) 
A. Welfare Calculation 

In general computing compensating variation within the numerical model is 

straightforward. It is possible to form first-order conditions for each consumer’s expenditure 

minimization problem by constructing the relevant Lagrangian function and taking the partial 

derivative with respect to the three classes of choice variables: zij, xi, and the Lagrange multiplier 

λi. Given benchmark utility levels based on the initial solution to the equilibrium model and the 

resulting quality levels from the simulation of some policy experiment, we then can solve each 

individual expenditure minimization problem as the solution to the following system of 

equations: 

 

( ) ( )

1 1

0 1 1 0 1 1

0, 0, 0

1 0, 0, 1 0

, ; , 0, 0, , ; , 0,

i i
ij i ij ij ij i

ij ij

i i
i i i i

i i

i i i i i i i i i i

U Up z z p
z z

U Ux x
x x

U U z x Q p U U z x Q p

λ λ

λ λ

λ λ

⎛ ⎞∂ ∂
− ≥ ≥ − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
− ≥ ≥ − =⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤− ≥ ≥ − =⎣ ⎦

 (4) 

where 0
iU  is the initial utility level of individual i from the benchmark equilibrium model and Q1 

and p1 describe vectors of quality attributes and travel costs that result from the equilibrium 

model after the proposed policy intervention. Repeatedly solving this problem based on draws 

from the underlying error distribution yields average CV calculations.  

In the numerical simulations that follow, we calculate CV based on changes in consumer 

surplus using changes in the areas under the demand curves for each site and individual. The 
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linear form of the demand functions makes this computationally tractable. However, the 

technique described above is potentially useful for any application in which the analyst can write 

down the consumer’s expenditure minimization problem. 

B. Numerical Model 

The numerical model is based on the same Iowa Lakes application described in the 

estimation section of the paper. Calibrating the simulation model to the same database allows us 

to verify the observed benchmark equilibrium in the data, calculate welfare measures for 

counterfactual experiments which can be compared directly to those produced by the statistical 

model, and make predictions on the sensitivity of general equilibrium effects to some of the key 

assumptions in the specification of the model. 

The set of sites and quality characteristics is the same as in the estimation experiment. 

The one difference between the dimensionality of the dataset used in the estimation procedure 

and the experiment described here is that we do not represent the full population of individuals in 

the numerical model. Solving the linear complementary problem described in equations (6) and 

(8) or (9) below using the full sample of individuals (749) and sites (128) from the dataset would 

produce a system of 749×128+128=96,000 equations/inequalities. While solving such a linear 

system is feasible, it would take a prohibitively long time on the hardware available to us for this 

project. Our compromise is to solve and present the results of the simulation models based on a 

sub-sample of 300 randomly selected individuals from the data. The results presented in the main 

body of the paper are based on one such sub-sample. However, we also describe the results of 

sensitivity analysis to this sampling procedure in materials available upon request. We find that 

the variance in our results across different sub-samples is quite small. 
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Model Specification 

Following the logic of the estimation strategy, the demand system is based on a dual 

representation of consumer behavior. The outcome of the consumer choice process is represented 

by an indirect utility function, H. Our main results are based on a linear demand system, which 

corresponds to the following form for H: 

 ( ) 1
2 ,i ij m mj im jk ij ik

j m j k

H y qπ α γ π β π π
⎡ ⎤⎛ ⎞= − + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑ ∑∑  (5) 

where πi is a vector of virtual prices that rationalizes the system of notional demands to take the 

non-negativity constraints on site demand into account (see below for a detailed discussion 

virtual prices). Thus, the virtual prices associated with demand for each site are determined by 

the following optimality conditions obtained via an application of Roy’s Identity 

 0 .i ij
ij ij m mj jk ik ij ij

m ki i

H
z q p

H y
π

α γ β π π
− ∂ ∂

= = + + ≥ ⊥ ≤
∂ ∂ ∑ ∑  (6) 

Congestion is assumed to make its contribution to utility separately from the other quality 

characteristics in the data and these characteristics are assumed to be exogenous such that 

 0 1,mj mjq q m= ∀ ≠  (7) 

where m=1 denote our congestion measure and 0
mjq  is the level of attributes given by the data for 

each site in the sample. 

One advantage of modeling both the intensive and extensive margins of choice in our 

recreation demand application is that it allows us to examine how the intensity of visitation to 

different sites affects congestions. This is in contrast to RUM-based applications (e.g., Murdock 

and Timmins, 2007) in which congestion is measured by the share of visitors who go to each 
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site. Based on this, we consider two different specifications for the transmission function. In the 

first, congestion is defined as the aggregate demand share at site j:  

 1 .

i

i ij
j

i

i k ik

H

q H
π

π

∂
∂

=
∂
∂

∑

∑∑
 (8) 

This specification mimics the approach used to produce both the welfare calculations from the 

statistical model in this paper and the results reported in Murdock and Timmins(2007). The 

second specification defines congestion as simply the total number of visitors to site j: 

 1 .i
j

i ij

Hq
π

∂
=

∂∑  (9) 

This specification will obviously take the impact of the intensity of visitation on congestion into 

account in our simulation results. 

Following the discussion from above the equilibrium model consists of first-order 

conditions based on (6) and the quality conditions in either (8) or (9). The GAMS code for the 

model specifications and solution routines is available upon request.  From a computational 

perspective, this type of problem is easily characterized as a mixed complementarity problem 

(MCP). The GAMS mathematical modeling software combined with the PATH MCP solver 

provides a robust way to solve large-scale MCP problems.2 

Equilibrium Effects of Congestion 

Writing out the algebra for the congestion transmission function on the right-hand side of 

(9) provides some intuition on the equilibrium implications of the negative feedback between 

visitation and congestion. Re-writing (9), we have 

                                                 
2 Michael Ferri’s documentation of the PATH solver provides a concise description of the MCP class of problems 
and the solution algorithm used by PATH. See the solver documentation page on www.gams.com). 
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 1 .j ij m mj jk ik
i m k

q qα γ β π⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (10) 

Collecting the q1j terms on the left-hand side of the equation and solving for q1j, we have 

 1
1

1

.
1

ij m mj jk ik
i m k

j

q
q

I

α γ β π

γ
≠

⎛ ⎞+ +⎜ ⎟
⎝ ⎠=

−

∑ ∑ ∑
 (11) 

Note that the term in the denominator is greater than one if congestion has a negative effect 

(γ1=γcongest < 0) on visitation.  Now consider the effect of a policy change on the equilibrium level 

of congestion.  If, for example, some aspect of water quality is improved at site j the direct effect 

on the level of congestion (measured by the numerator of (11)) causes congestion to rise.  

However, the negative feedback effect caused by this increase in congestion leads to a 

subsequent decrease demand for site j.  This in turn reduces the level of congestion at the site, 

and so on.  The term in the denominator of (11) describes the net result of this adjustment 

process on the level of congestion, measured as the factor by which the direct effect of the 

increase in congestion is attenuated by the general equilibrium effects.  Furthermore, notice that 

the sensitivity of the feedback effect depends directly on the magnitude of the γcongest parameter – 

when the demand response to congestion is stronger, the feedback effect is stronger. 

For this logic to tell the whole story, it must not be the case that this adjustment induces 

changes in the virtual prices at zero-visit sites.  If there were systematic changes in these prices 

across individuals in response to the policy, this could complicate the equilibrium adjustment 

story described here.  Nonetheless, the basic feedback mechanism should be clear from our 

discussion. 
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C. Calibration 

The numerical model is calibrated to the same Iowa Lakes dataset used in the estimation 

routine. Broadly, the idea is to match the model to the observed demands in the benchmark data 

exactly in equilibrium, and to match the price and quality responsiveness of the individual 

demand functions to the point estimates of the demand coefficients in the estimation routine.  

The point estimates that are used are:  βjj=−0.045 for all j, βkj=0.0002 for all j and k not equal, 

γsecchi=0.084, γchloro=−0.006, and γcongest=−54.34.  Because the γcongest parameter is a key 

determinant of the positive and normative consequences of congestion in the model, we also 

perform sensitivity analysis in which we compare the outcomes of simulation experiments in 

which the model is calibrated to values of γcongest that are one-half and twice the value of its point 

estimate from the estimation results. When the “totals” specification of congestion described in 

equation (9) is used, γcongest is re-scaled by dividing by the total number of visits to all sites in the 

benchmark dataset.  

Calibration of Random Parameters 

The basic premise of the estimation strategy is that there are unobserved components of 

individual tastes due to the fact that non-negativity constraints on demands are binding at many 

of the sites in the benchmark dataset. Thus, the form that the demand functions take in the 

specification of the linear demands in the estimation model is: 

 0ij ij m mj jk ik ij ij ij
m k

z q pα γ β π ε π= + + + ≥ ⊥ ≤∑ ∑  (12) 

where the difference between (12) and (6) is the addition of an error term εij in (12). In order to 

calibrate the simulation model in a manner consistent with this logic, we must allow for the fact 

that ij ij ijα α ε≡ +  may take on a range of values that are consistent with replicating the 
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benchmark dataset. Consider two possible scenarios. For a given individual, the non-negativity 

constraint for one of her demand functions may be weakly binding in the sense that a marginal 

reduction in the travel cost to that site would induce visits, or it may be strongly binding in which 

case even making the site substantially more attractive from the individual’s perspective would 

still yield zero visits. Simulating policy experiments and calculating the welfare consequences 

under these two different scenarios would obviously lead to different results for this individual. It 

is also possible that systematic differences along these lines might affect equilibrium outcomes at 

the aggregate level through their affects on the congestion mechanism. 

One approach to calibrating these ijα  parameters is to take draws from the posterior 

distribution of these parameters described by the estimation results. By repeating our 

counterfactual experiments for different sets of draws from these distributions, we can describe 

the distribution of the outcome measures that we are interested in such as equilibrium visitation 

and congestion levels at different sites and welfare changes for different types of individuals. 

While there is not a unique mapping of the ijα  terms to observed demands, the conceptual logic 

of the virtual prices described above does impose some structure on the calibration problem. 

Specifically, it pins down the value of the virtual price so that πij=pij if the benchmark number of 

visits that an individual takes to site j is non-zero. Thus 

 0 . . 0,ij ij m mj jj ij jk ik ij
m k j

z q p j s t zα γ β β π
≠

⎡ ⎤
= − + + ≥ ∀ >⎢ ⎥

⎣ ⎦
∑ ∑  (13) 

where  and ij mjz q  are the benchmark levels of site visits and attribute levels observed in the data 

for each site. 

For site demands that are zero in the benchmark data, we draw the ijα  randomly 

according to the posterior distribution for these terms. These draws imply specific realizations of 
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the virtual prices associated with each demand because they must replicate the observed demand 

of zero given ijα  and the other virtual prices in the demand system. Thus,  

 / 0 . . 0.ij m mj jk ik jj ij
m k j

q j s t zπ γ β π β
≠

⎡ ⎤
= − + ≥ ∀ =⎢ ⎥

⎣ ⎦
∑ ∑  (14) 

The calibrations of the free α parameters (those for he positive demand sites) and the virtual 

prices (i.e., those for the zero-demand sites) are characterized by the solution to the system of 

equations defined by (13) and (14). For a given individual, if N is the number of non-zero sites 

demands and Z is the number of zero site demands, this strategy produces a system of N + Z 

equations and N + Z unknowns – N of the α  terms and Z of the π terms. 

The solution to this system of equations is not, however, guaranteed to produce a set of 

virtual prices that do not violate the condition of the model that these prices be less than the 

observed travel cost prices to each site. Therefore, the full calibration routine involves 

sequentially solving this system of equations, checking to insure that the resulting virtual prices 

do not violate their upper bounds, taking new draws from the α  distributions for those demands 

that do not violate this condition, and solving for the new virtual prices until no such violations 

occur. 

D. Counterfactual Experiments 

The purpose of the simulations described in this section is to explore the sensitivity of the 

welfare calculations to the form of the equilibrium model.  In particular, we investigate the 

extent to which the welfare calculations are sensitive to two assumptions of the model 

specification:  the intensity of the individual site demand response to the level of congestion at 

that site, and the form of the congestion measure itself. 

The welfare results that we report are based on the following counterfactual scenarios: 
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• Scenario 1: Close nine sites representing the most heavily visited lakes in each of nine 

regions of Iowa. 

• Scenario 2: Close nine sites representing moderately visited sites in each of nine regions of 

Iowa.  

• Scenario 3: Improve water quality throughout the state such that all lakes obtain at least the 

rating of ‘good water quality’.  According to technical documents this corresponds to a 

minimum secchi reading of 2.17 meters and maximum chlorophyll reading of 8.26ug/l. This 

scenario involves improvements at 114 lakes. 

• Scenario 4: Improve a set of seven Iowa Department of Natural Resources ‘target lakes’ to 

water quality conditions given by a minimum secchi reading of 5.7 meters and maximum 

chlorophyll reading of 2.6ug/l. These quality characteristics correspond to the cleanest 

among the 129 lakes in our choice set. 

For each of the policy scenarios that we have outlined, we simulate the calibrated model 

under the assumption that the γcongest parameter takes on values of one half, one, and two times 

the value of the point estimate for this parameter from the estimation results.  When γcongest is 

twice (half) the value of the point estimate, a marginal increase in congestion at a site will be 

twice (half) as influential in discouraging site demand, and so we would expect to observe 

magnified (diminished) impacts of congestion in the full equilibrium response to the policy 

counterfactuals. 

The benchmark assumption in this analysis is that the level of congestion at a given site is 

a function of the total number of visits to that site in equilibrium.  In practice, we have no strong 

prior (or strong guidance from the literature) on what form this externality transmission function 

should take, however.  To explore the sensitivity of the model to this assumption and to link the 
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simulation results to the empirical experiments in the paper, we also simulate the model under 

the assumption that congestion depends only on the share of visitors to each site.  The obvious 

implication of this alternative specification for congestion is that the aggregate increases or 

decreases in demand will not have an effect on the damages associated with congestion.  

Table 1 reports on the welfare results for the core simulations.  The rows of the table list 

the four different policy scenarios.  The columns of the table indicate whether the welfare 

measure is a partial equilibrium (PE) welfare measure, in which the level of congestion at each 

site is held fixed at the benchmark level, or a general equilibrium (GE) measure in which 

congestion is determined as an endogenous part of the demand system, or the percentage 

difference between the PE and GE measures.  For each set of these measures, the columns 

indicate the assumed value for the parameter in the model that determines the intensity of the 

individual demand response to an increase in the level of congestion at a site --- either half, once 

or twice the value of the point estimate. Table 2 duplicates the results for the core model run 

("totals" specification and middle γcongest estimate) and compares these results with the results of 

a comparable model in which the "shares" specification of the congestion transmission function 

is used. 

Turning to Table 1, first consider the overall pattern of the welfare changes for the 

different counterfactual scenarios where γcongest is calibrated to the value of the point estimate 

from the data.  In both of the scenarios that involve shutting down lakes to recreation, the sign of 

both the PE and GE welfare effects is negative, reflecting the fact that consumers are worse off 

as a result of the loss of these sites.  The magnitude of the loss is larger for policy scenario #1 

than for #2 because the former involves shutting down the most popular sites in different regions 

of the state and scenario #2 involves shutting down only moderately visited sites.  Similarly, both 
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of the proposals that increase water quality characteristics lead to overall welfare improvements, 

with larger improvements associated with scenario #3 than #4. 

The GE welfare measures, which take into account the adjustments in site congestion 

levels in the wake of the demand responses, are not significantly different from the PE estimates 

in magnitude for the policy scenarios that involve shutting down sites (scenarios #1 and #2), 

suggesting that the effect of the re-sorting induced by the policy change does not have important 

welfare implications.  The difference between these estimates is less than 2% for the core 

simulations.  However, the differences are more substantial for both of the water quality 

improvement scenarios – by roughly 40% in both cases.  Turning to the results of the sensitivity 

analysis with respect to the  γcongest parameter, we see that the effect of increasing the 

responsiveness of demand to congestion has the hypothesized effect – the differences between 

the PE and GE welfare measures that we observe in the core simulations are magnified. 

It is relatively easy to account for the results of the quality-change experiments.  The 

direct effect of the policy is to increase lake quality levels at some or all site in the model.  This 

leads to welfare gains to visitors.  The general equilibrium response to increased quality is higher 

congestion at these improved sites which tends to offset the welfare gains from quality 

improvements.  Thus the GE estimates are smaller than the PE estimates, and the difference 

between the two is an approximate measure of the effects of congestion described by the logic in 

equation (11). 

The fact that the role of the congestion effect is not the same between the quality-

improvement and site-shutdown scenarios speaks to the range of outcomes admitted by this type 

of model.  Table 2, which describes the results of the comparison between the "shares" and the 

"totals" specifications of the model for the same policy counterfactuals, is useful in explaining 
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this behavior.  Again, the rows of the table describe the different policies, and the columns 

describe PE and GE welfare measures for each of the two different versions of the model. 

The two specifications lead us to somewhat different conclusions about the general 

equilibrium implications of the policy scenarios.  In the shares specification, the policies that 

were left unchanged by congestion effects under the totals assumption (site shutdown scenarios) 

lead to welfare losses in general equilibrium that are roughly 6% larger than the PE welfare 

estimates.  Perhaps more striking is the disappearance of the congestion effects in the quality-

improvement scenarios, which lead to roughly 40% overstatement of the benefits in the PE 

measures under the totals specification of the model. 

While in principle many effects contribute to determining the equilibrium outcomes we 

report, an important determinant of the differences between these two models lies in the effect of 

the policy change on the intensity of the congestion externality at the different sites after 

individuals are allowed to adjust their visitation patterns.  First, consider the site shutdown 

policies. Site shutdown is equivalent to a dramatic increase in the price of visiting the affected 

sites.  This leads to welfare losses for those individuals who were visitors before the policy 

change.  The resulting PE cross-price effect leads to higher visitation at all other sites in the 

model.  In the GE adjustment process, this shift to higher congestion levels at all other sites and 

lower (zero) congestion at the sites that were affected by the policy.  The increase in congestion 

at the substitute sites has a direct, negative impact on consumer welfare along the lines of the 

effects described for the quality-improvement scenarios.   

However, as the discussion of the demand system below demonstrates, the reduction in 

the level of congestion at sites that have been shut down also affects demand.  Despite the fact 

that an individual no longer visits such a site after it has been shut down, her virtual price for that 



 24

site remains a function of the characteristics of that site and a determinant of demand (and 

consumer surplus) at other sites.  Because of this, a decrease in the level of congestion at that site 

will tend to increase a consumer’s virtual price for that site.  The increase in this price tends to 

increase the value of visitation to substitute sites, thus conferring welfare gains and expanded 

visitation at these alternative sites.  This explains why GE welfare losses in the shutdown 

scenarios are less damaging than one might expect in the totals specification of the model. 

The severity of the increase in congestion at the substitute sites is a direct function of the 

form of the congestion transmission function that we assume.  Because the congestion measure 

in the totals specification registers the fact that total visitation increases or decreases after these 

policies, it captures congestion effects that are based both on substitution across sites (as in the 

site shutdown scenarios) and those that are based primarily on increased overall visitation (as in 

the quality-improvement scenarios).  The same is not true of the shares model, where the 

measure of congestion is not sensitive to the aggregate level of visitation. 

The PE and GE comparisons for the quality-improvement scenarios across the totals and 

shares specifications reflect this fact.  Because these scenarios tend to involve less substitution 

and more aggregate change in the level of visitation, the large congestion effects that we 

observed in the totals model disappear under the shares assumption.  This is particularly evident 

in scenario #3, in which the policy involves an improvement to a large number of lakes in the 

sample.  This tends to minimize the substitution effects across sites. 

Overall, the simulations produce results both anticipated and unanticipated by our 

conceptual modeling.  Strong congestion effects which conform to the mechanism described in 

(11) are apparent in the core simulation results based on the totals model, and their importance 

varies in the expected manner with the assumed value of the congestion parameter.  However, 
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the fact that the reduction of congestion at sites that are shutdown in scenarios #1 and #2 offsets 

the negative impact of congestion is a surprise. 

The effect of changing the form of the transmission function from the totals to shares 

specification also yields interesting results.  In particular, whether or not this function captures 

the intensity of visitation and whether or not the policy in question results in significant 

substitution across sites are both important determinants of the magnitude of the congestion 

effects.  Comparing these two specifications was useful diagnostically in this modeling exercise.  

Perhaps more importantly, it leads us to conclude that obtaining the form for these functions in 

different policy applications should be a priority for future work in this area. 

V. Econometric Modeling 

In order to assess the feedback effects we are interested in, the non-price equilibrium 

outcomes need to be linked in a consistent manner to estimable models of individual behavior. 

Specifically, the models must be able to capture consumer response to changing price and quality 

conditions and allow for those responses to occur at both the intensive and extensive margins. 

This is particularly important when evaluating major policy shifts that will induce some 

individuals to enter or leave the market entirely (i.e., when corner solutions emerge). What is 

required is a model that readily admits the concept of a virtual price. By virtual price we mean a 

summary measure that consistently and succinctly captures all constraints on behavior, both 

price and non-price, which in turn ultimately determine people’s choices. The KT model 

(Phaneuf et al. 2000; von Hafen et al. 2004) and its dual counterpart (Lee and Pitt 1986; Phaneuf 

1999) are uniquely positioned for this purpose. The latter is particularly attractive in that it 

involves a direct parameterization of individuals’ virtual prices. Estimation and welfare 

calculations (and examining equilibrium concepts in the model) involve comparisons among 



 26

virtual prices. The flexibility in characterizing behavior afforded by the dual model is also an 

attractive feature of the approach. 

In this section of the paper, we begin by providing a general overview of the dual 

modeling framework, followed by the specification of the particular functional form that will be 

used in our application below. Finally, the econometric procedures used to estimate the model 

are detailed. The econometric procedures employed draw upon Bayesian tools of data 

augmentation and Gibbs sampling and a two-step procedure for handling the underlying 

endogeneity of quality attributes (such as congestion and fish stock) that are central to our 

investigation of equilibrium responses. 

A. The Dual Model 

The dual model begins with the specification of the individual’s underlying indirect 

utility function. Let H(p,y;q,θ,ε) denote the solution to a utility maximization problem defined 

by: 

 ( ) ( ){ }, ; , , ; , , | ' .
z

H p y q Max U z q p z yθ ε θ ε= =  (15) 

where z is the vector of private goods to be purchased by the individual, p denotes the 

corresponding prices, y denotes income, and q is a vector or matrix of public goods that the 

individual agent takes as given. For example, in our application considering the demand for 

recreation, the private goods would include recreation trips to the available sites, p would reflect 

the costs of traveling to those sites, and q would include the quality attributes of the sites. These 

attributes, while taken as given by the individual, include factors (such as congestion and fish 

stock) that are determined in equilibrium by the decisions made in the market as a whole.3 The 

                                                 
3 Furthermore, some of the site attributes will not be observed by the analyst. For now we do not distinguish 
between observed and unobserved quality attributes, though this distinction will become important at the estimation 
stage. 
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direct utility function U(z;q,θ,ε) depends upon parameters θ and attributes of the individual ε that 

are unobserved by the analyst. 

It is important to note that the indirect utility function in equation (15) is derived without 

imposing non-negativity constraints on demand. Applying Roy’s Identity to equation (15) thus 

yields notional (or latent) demand equations 
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where ( )* * , ; , ,j jz z p y q θ ε=  will be negative for goods the individual does not wish to consume 

and positive for those goods she does consume. Observed consumption levels are then derived 

through the use of virtual prices, which rationalize the observed corner solutions. For example, 

suppose that the first r goods are not consumed. Let pN=(p1,…,pr)' denote the prices for the non-

consumed (i.e., corner solution) goods and pC=(p1+r,…,pJ)' denote the prices for the consumed 

goods (i.e., those with positive consumption). The virtual prices for the non-consumed goods are 

implicitly defined by 
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The observed demands for all the commodities become 
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where p*=(π1,…,πr, p1+r,…,pJ)'. For the non-consumed goods, we have that 

 ( )*, ; , , 0, 1,...,jz p y q j rθ ε = =  (19) 
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by construction and 

 ( )*, ; , , , 1,..., .j jp y q p j rπ θ ε ≤ =  (20) 

For the consumed goods, in contrast, we have: 

 ( )*, ; , , , 1,..., ,j jz p y q z j r Jθ ε = = +  (21) 

and 

 ( )*, ; , , , 1,..., .j jp y q p j r Jπ θ ε = = +  (22) 

The system of equations in (19) through (22) provides the link between the observed data on 

usage and the implied restrictions on the underlying error distributions, which can be in turn used 

for the purposes of estimation.  In addition these equations allow us to express the actual indirect 

utility function (the solution to the utility maximization problem with non-negativity constraints 

enforced) as  

 ( ) { }, ; , , max ( , ; , , ) ,V p y q H p y qω

ω
θ ε θ ε

∈Ω
=  (23) 

where Ω denotes the set of all possible demand regimes (combinations of corner and interior 

solutions among the J sites) and pω denotes the particular combination of virtual and actual 

prices associated with demand regime ω.   

 Equation (23) demonstrates explicitly that the dual model is an endogenous regime-

switching approach.  The solution to the consumer’s problem consists of the set of goods 

(recreation sites in our context) that are chosen as well as the quantity of each good consumed.  

The comparison of true and virtual prices as shown in equation (20) distinguishes the chosen 

goods from the non-chosen goods and thus can be used to gauge movements into and out of the 

market for particular commodities.  In addition the virtual prices are functionally dependent on 

both the price and non-price attributes of the goods.  Thus it is appropriate to view the virtual 



 29

prices as quality-adjusted endogenous reservation prices, which can change in response to either 

price or non-price attribute changes.  In the recreation context we can therefore measure changes 

in visitation patterns to particular sites by examining how virtual prices change in response to 

both exogenous and endogenous attribute changes.   

B. Model Specification 

The dual model specification can by obtained by choosing a functional form for the 

underlying indirect utility function H(p,y;q,θ,ε) and deriving from it the corresponding notional 

demand and virtual price equations (see for example Pitt and Millimet, 2003). Alternatively, as 

in Wang (2003), one can begin with a system of notional demands for the goods of interest (i.e., 

an incomplete demand system) and integrate back to obtain the underlying quasi-indirect utility 

function (Hausman, 1981). The advantage of the latter approach is that tractable notional demand 

equations can be specified, making the computation of virtual prices straightforward. The 

disadvantage here, of course, is that the resulting demand system is incomplete and does not 

capture substitution possibilities to goods outside of the choice set. In addition the restrictions 

needed to ensure integrability tend to require a choice between substitution and income effects. 

While we employ the incomplete demand system approach in our empirical analysis, further 

research into models that start with the underlying indirect utility function (e.g., using a Hicksian 

composite for all other goods) seems worth pursuing. 

Our empirical specification begins with the following system of Marshallian notional 

demand equations 

 *

1

, 1, , ,
J

ij j jk ik j i ij
j

z p y j Jα β γ ε
=

= + + + =∑ …  (24) 
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where the subscript i denotes people i=1,…,N and αj=αj(qj,ξj) is a function of both observable 

site attributes for site j (the vector qj) and unobservable factors which we denote ξj.  We assume 

that these factors have a linear form given by 

 , 1, , .j j jq j Jα γ ξ′= + = …  (25) 

The remaining notation is as follows:  pik is the price of site k for individual i and yi denotes 

individual i’s income level. We impose a series of restrictions on the parameters of (24) to make 

the system of equations weakly integrable (See LaFrance 1985, 1986). Specifically, we assume 

that ,jk kj j kβ β= ∀  and 0j jγ = ∀ . The resulting notional demand system becomes: 

 *

1

, 1, , .
J

ij j jk ik ij
j

z p j Jα β ε
=

= + + =∑ …  (26) 

The corresponding (notional) quasi-indirect utility function for (26) is given by:4 

 ( )
1 1 1

, ; , ,
J J J

i i i i j ij ij jk ij ik
j j k

H p y q y p p pθ ε α ε β
= = =

⎡ ⎤= − + +⎣ ⎦∑ ∑∑ . (27) 

As indicated above the notional demand equations can be used to define virtual prices for 

the non-consumed goods that rationalize the observed corner solutions. For illustration, suppose 

again that the first r goods are not consumed. The virtual prices πij=πij(piC;q,θ,εi) for these 

commodities are then implicitly defined by the system of equations: 

 
1 1

0 , 1, , ,
r J

j jk ik jk ik ij
j j r

p j Jα β π β ε
= = +

= + + + =∑ ∑ …  (28) 

or in matrix notation by 

 r ,N NN iN NC iC iNpα β π β ε= + + +0  (29) 

                                                 
4 Note that the quasi-indirect utility function depends upon income and the prices of the goods in the incomplete 
demand system, but not the prices of goods outside of the system. This captures the indirect utility associated with 
an indirectly weakly separable branch of overall utility (See, e.g., Herriges, 1983; Caves, Christensen and Herriges, 
1987). 
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where 0r is an r×1 vector of zeros, αN=(α1,...,αr)', πiN=(πi1,...,πir)', piC=(pi,r+1,…,piJ)', 

εiN=(εi1,...,εir)', 
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and 

 

1, 1 1, 2 1

2, 1 2, 2 2

, 1 , 2

.

r r r r J

r r r r J
CC

J r J r JJ

β β β
β β β

β

β β β

+ + + +

+ + + +

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (32) 

Solving for the virtual prices, we find that 

 [ ]1
iN NN N NC iC iNpπ β α β ε−= − + +  (33) 

and note that the virtual prices for the non-consumed goods depend on the quality attributes of 

these goods.  The observed demand equations for the consumed goods are derived by 

substituting (33) into (26), yielding: 

 
[ ]

( ) ( ) ( )
1

1 1 1

,

iC C CN iN CC iC iC

C CN NN N NC iC iN CC iC iP

C CN NN N CC CN NN NC iC iC CN NN iN

C CC iC iC

z p

p p

p

p

α β π β ε

α β β α β ε β ε

α β β α β β β β ε β β ε

α β ε

−

− − −

= + + +

= + − + + + +

= − + − + −

= + +

 (34) 

where 1
C C CN NN Nα α β β α−≡ − , 1

CC CC CN NN NCβ β β β β−= − , and 1
iC iC CN NN iNε ε β β ε−= − . Notice that the 

observed demands depend directly only on the prices of those goods consumed, but that they 
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depend upon the quality attributes for all the goods since all the αj’s enter into equation (34) and 

they each depend in turn upon the corresponding quality attributes. 

Finally, in our empirical analysis below, we impose two additional simplifying 

restrictions on the model in equation (26). First, we assume that all of the own and cross-price 

coefficients are the same across sites; i.e., 1jj jβ β= ∀  and 2jk j kβ β= ∀ ≠ . Second, we assume 

that the idiosyncratic individual heterogeneity captured by εi=(εi1,...,εiJ)' is iid N(0,Σ), where 

( )2 2
1 , , Jdiag σ σΣ = … . Neither of these restrictions is necessary from a conceptual or 

computational perspective, but they substantially reduce the number of parameters that must be 

estimated in the empirical analysis.   

VI. Application 

Our empirical analysis focuses on modeling the demand for lake recreation in Iowa, 

drawing on data from the first year of the Iowa Lakes Project. The Iowa Lakes Project is a four-

year panel data study, analyzing the visitation patterns to 129 Iowa Lakes by 8000 randomly 

selected households, providing a rich source of variation in usage patterns. Iowa is particularly 

well suited for our research for several reasons. First, Iowa’s lakes are characterized by a wide 

range of water quality conditions, including both some of the cleanest and some the dirtiest lakes 

in the world. Second, detailed information is available on the environmental conditions in each 

lake, including fifteen physical and chemical measures (e.g., Secchi transparency, total nitrogen, 

etc.) obtained three times each year during the course of the Iowa Lakes Project. Third, the State 

of Iowa is currently considering major lake water remediation efforts. These include multi-

million dollar projects to improve individual target lakes as well as the Governor’s stated 

objective to remove all of Iowa’s lakes from the US EPA’s impaired water quality list by 2010. 
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These changes provide natural, and policy relevant, sets of scenarios to consider in investigating 

the general equilibrium effects of regulatory interventions. 

The first year Iowa Lakes Project survey was administered by mail to a randomly 

selected sample of 8000 households beginning in November of 2002. A total of 4423 surveys 

were completed, for a 62% response rate once non-deliverables surveys are accounted for.5 

While the survey contained a number of sections soliciting information regarding the socio-

demographic characteristics of each respondent and their attitudes toward potential water quality 

changes in the state, the key section for the current analysis obtained information regarding the 

respondents’ visits to each of 129 lakes during 2002. On average, approximately 63% of Iowa 

households were found to visit at least one of these lakes in 2002, with the average number of 

day trips per household per year being 8.1. There are, of course, a large number of corner 

solutions in this dataset, with 37% of the households visiting none of the lake sites and most of 

the households who choose to visit the lakes visiting only a small subset of the available sites. 

Fewer than 10% of those surveyed visited more than five distinct sites during the course of a 

year. For the purposes of the econometric analysis below, a sub-sample of the 2002 usage data 

was used. Specifically, we had available 1286 observations, randomly selected from the full 

sample. These records were further narrowed to the 749 users in the sub-sample (i.e., those 

households taking at least one recreational trip in 2002). 

The Iowa Lakes survey data was supplemented with two data sources. First, for each 

individual in the sample, travel costs from their home to each of 129 lakes were calculated. The 

transportation software package PCMiler was used to establish both the distance and travel time 

to each lake. Travel costs were then computed using a travel cost of $0.28/mile and valuing the 

                                                 
5 Details of the survey design and implementation can be found in Azevedo, et al. (2003). A copy of the survey 
instrument is available online at http://www.card.iastate.edu/environment/items/IowaLakesSurvey_02.pdf.  
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travel time at one-third the individual’s wage rate. The average travel cost over all site/individual 

combinations was $135. Second, water quality measures for each of the lakes were provided by 

the Iowa State Limnological Laboratory, which had measured water quality at each of the 129 

lakes three times in 2002. The average Secchi transparency and Chlorophyll levels are used in 

the current analysis. Secchi transparency measures water clarity and ranges from 0.09 to 5.67 

meters across the 129 lakes in our sample. Chlorophyll is an indicator of phytoplankton plant 

biomass which leads to greenness in the water, and ranges from 2 to 183 µg/liter among the Iowa 

lakes. 

VII. Estimation Algorithm 

The estimation of the parameters in our model of recreation demand can be divided into 

two stages. In the first stage, we estimate basic parameters in the demand system characterized 

by equations (19) through (22). Specifically, we obtain estimates of the 2J+2 parameters 

θ=(α1,...,αJ, β1, β2, σ1,...,σJ) using a Bayesian computational approach relying on Gibbs 

sampling and data augmentation.6 Note that site specific intercept terms capture all of the site 

specific attributes, including the endogenous factors of interest and unobserved site 

characteristics. The purpose of the second stage then is to estimate the functional relationship 

between these intercepts and the known quality attributes. 

A. First Stage Estimation 

Data augmentation techniques pioneered by Albert and Chib (1993) in the context of 

discrete choice models provide a powerful tool for handling latent variables, simulating these 

missing components of the data and, in doing so, making the analysis more tractable. In the 

                                                 
6 More precisely, we obtain posterior distributions on these basic parameters given our data and prior distributions 
for the same parameters. However, the approached employed here can also be interpreted from a frequentist 
perspective since, based on the Bernstein-von Mises Theorem, the posterior mean converges to the maximum of 
likelihood, yielding MLE estimates (See, e.g., Train, 2003, ch. 12). 
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current context, the latent variables are the notional demands. Together with Gibbs sampling 

techniques we can use data augmentation to readily simulate values from the posterior 

distribution of interest.7 

Formally, the posterior distribution is characterized by 

 ( ) ( ) ( ) ( )* * *, | | , |p z z p z z p z pθ θ θ θ∝ . (35) 

Note that the data augmentation procedure treats the unknown latent factors essentially as 

additional parameters, characterized in terms of a prior distribution and for which a posterior 

distribution is generated. The priors for θ are assumed to take the following forms: 

 ( )~ , mN I
α

ψ ψ τ
β

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
, (36) 

where τ is a large constant and Im is an m×m identity matrix with m=J+2, and the 2
jσ  are 

independent inverted gamma variates with ( )2 ~ 1,j jIG sσ . While the joint posterior distribution 

in (35) is complex, the corresponding conditional posterior distributions for z*, ψ, and 2
jσ  each 

have convenient functional forms. Thus, an iterative Gibbs sampling routine can be used to 

simulate draws from the posterior distribution. The following steps are involved in a simulation 

process drawing M values from the posterior distribution: 

Step 1: Set starting values 

Initial values ψ(0) and ( )2 0jσ  for the simulation are established. For example, one might 

obtain starting values in the current context by running a simple tobit model for each site using 

observed trips data, yielding site specific intercepts and variance terms (i.e., αj and 2
jσ ) and, by 

averaging across sites, starting values for the own- and cross-price parameters. 

                                                 
7 A similar approach was employed by Wang (2003) and Pitt and Millimet (2003). 
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Step 2: Drawing posterior notional demands from p(z*|z,ψ,Σ) 

The notional demands, conditional on observed demands and the parameters of the 

model, are drawn from a truncated normal distribution for non-consumed goods and from a 

normal distribution for the consumed goods. Specifically, from equation (34) we have that  

 ( ) ( ) ( )1 1 , 1, , ,ij ij j jC iCm z m m p j r Jε α β= − − − − = + …  (37) 

where the parenthetical arguments denote the step in the iteration process (m=1,…,M). Since 

1
iC iC CN NN iNε ε β β ε−= − , then ( ) ( ), ~ 0,iN iC Nε ε ′′ ′ Ω  where 

 

1 1 1 1 , 1 1

1 , 1

1 , 1 , 1 , 1 , 1 , 1

1 , 1

1

i i i ir i i r i iJ
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i i r ir i r i r i r iJ i r

i iJ ir iJ i r iJ iJ iJ

NN NC NN NN NC

Cov

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

β β

+

+

+ + + + +

+

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Ω = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ Σ − Σ
= 1 1 1 1 1 .

CN CN NN NN CC CN NN NN NN NC CN NN NC CN NN NCβ β β β β β β β β β− − − − −

⎡ ⎤
⎢ ⎥Σ − Σ Σ + Σ − Σ − Σ⎣ ⎦

 (38) 

In the current application, this expression reduces considerably, since ΣNC=0N×C, so that: 

 
1

1 1 1 .NN NN NN NC

CN NN NN CC CN NN NN NN NC

β β
β β β β β β

−

− − −

⎡ ⎤Σ −Σ
Ω = ⎢ ⎥− Σ Σ + Σ⎣ ⎦

 (39) 

The notional demands for the non-consumed goods correspond to * 0ijz < , or equivalently: 

 
1

, 1, , .
J

ij j jk ik ij
j

p j rε α β δ
=

⎡ ⎤
< − + ≡ =⎢ ⎥

⎣ ⎦
∑ …  (40) 

Using the expression in (40), we sequentially obtain ( ) ( ),|ij i jm mε ε − , where 

( ) ( ) ( ) ( ) ( ) ( )( ), ,1 , 1 , 1 ,, , , 1 , , ,i j i i j i j i r iCm m m m m mε ε ε ε ε ε− − += −… …  denotes all of the errors for 

individual i except ( )ij mε , noting that 
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 ( ) ( ), | |,
| ~ , , 1, , ,

ijij i j ij j j jTN j r
δ

ε ε µ ω− − −−∞
= …  (41) 

where 

 1
| , , , , 1, , ,j j j j j j i j j rµ ε−
− − − − −= Ω Ω = …  (42) 

and 

 1
| , , , , 1, , .j j jj j j j j j j j rω ω −
− − − − −= − Ω Ω Ω = …  (43) 

Draws of εij(m) for j=1,…,r are obtained using (41) and the inversion method. Values of εij(m) 

for j=r+1,…,J are then obtained using 

 ( ) ( ) ( )1 , 1, , .ij ij CN NN iNm m m j r Jε ε β β ε−= + = + …  (44) 

Finally, the notional demands are formed using 

 ( ) ( ) ( ) ( )*

1

1 1 , 1, , .
J

ij j jk ik ij
j

z m m m p m j Jα β ε
=

= − + − + =∑ …  (45) 

Step 3: Drawing posterior covariance terms from p(Σ|z*,z,ψ) 

The variance terms 2
jσ ’s are updated using the conditional posterior distributions 

( )2 *| , ~ 1 ,j j jz IG N sσ ψ + , where ( ) ( )2 1j j js s Ns N= + +  and 2
js  denotes the sampling variance 

from the ordinary least squares estimation of  

 ( ) ( ) ( )*

1

, 1, , .
J

ij j jk ik
j

z m m m p j Jα β
=

= + =∑ …  (46) 

The updated value of ( )2
i mσ  is drawn from ( )( )1 , jIG N s m+ . 

Step 4: Drawing posterior parameters from p(ψ|z*,z, Σ) 

Conditional on the notional demands and the variance-covariance structure, the posterior 

distribution of the parameters ψ=(α',β1,β2) is normally distributed. Specifically, 
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 ( )~ , ,N ψψ ψ Σ  (47) 

where ψ  denotes the SUR estimates of ψ and ψΣ  denotes the corresponding covariance matrix 

of the estimated parameters. The parameter vector ψ(m) is then obtained by drawing from 

( ) ( )( ),N m mψψ Σ . 

Steps 2 through 4 are repeated for m=1,…,M. The first B draws are used for burn-in and 

discarded. From the remaining M-B draws, every fourth draw is retained, yielding a total of (M-

B)/4 draws from the posterior distribution of interest. In our application, we use M=7200 and 

B=4000, yielding a total of 800 draws for the posterior distribution. 

B. Second Stage Estimation 

The algorithm described above provides realizations from the posterior distribution for 

the parameters α1,…, αJ as well as the price and error variance terms.  In this subsection we are 

interested in decomposing the intercepts into components that represent the observable and 

unobservable attributes of the recreation sites.  Since the former will include endogenous 

attributes that ultimately provide the general equilibrium aspects of the model this decomposition 

is particularly important.  Likewise any welfare analysis concerning site attributes (partial or 

general equilibrium) will require an understanding of how demand is impacted by changes in 

observable site quality levels. 

The linearity of equation (25) suggests that the unknown parameter vector γ can be 

computed via an auxiliary regression of the intercepts on the observed quality attributes qj, with 

ξj then computed as the residual from the regression estimates.  This strategy is used in much of 

the empirical IO literature, and has been applied in the recreation context by Murdock (2006) and 

Timmins and Murdock (2007). We nest this notion within the Bayesian estimation paradigm as 



 39

follows.  For each of the 800 draws from the posterior distribution of α1,…,αJ obtained in the 

first stage we regress the realized intercept values on the vectors of site attributes q1,…,qJ.  For 

each draw of the intercepts we therefore obtain a value for γ.  The set of these values gives an 

empirical distribution that characterizes the posterior distribution for the unknown parameters γ, 

which provides measurements of how observable site attributes affect site demands.   

This strategy is feasible if two conditions are met.  First, J must be large enough and 

there must be enough variation over the qj’s to provide sufficiently precise estimates from the 

linear model employed.  In our application J=128, which we find to be large enough to estimate 

a small number of site attribute effects.  Second, the observable attributes qj must be uncorrelated 

with the unobserved attributes ξj or instruments must be available for the (econometrically) 

endogenous explanatory variables.  Since we are interested in examining the role of endogenous 

attributes we are almost certainly faced with the need to use instruments in our second stage 

regression.  For the case of congestion, a site is likely to be heavily visited (and hence congested) 

if it possesses attractive attributes, some of which will not be measured by the econometrician 

and will therefore reside in ξj.  This will induce (positive) correlation between the measure of 

congestion and the error in the second stage regression, leading to biased estimates for the role of 

all observable attributes on site demand. 

We deal with the endogenous congestion attribute via a strategy recently suggested by 

Timmins and Murdock (2007) in the context of a site choice model.  We define our baseline 

measure of congestion as the share of people who visit a particular site.  For later reference it is 

useful to link our measure of congestion to the modeling framework described above.  Thus the 

baseline share of people who visit site j is defined by 
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 0 1

1

,
N

j ij
i

s N I−

=

= ∑  (48) 

where Iij=1 if the person i’s notional demand for site j is positive (i.e. * 0ijz > ) and zero otherwise 

(i.e. * 0ijz ≤ ).  Our second stage estimation problem for each posterior draw from the intercepts is 

therefore given by  

 0
0 , 1,..., ,j c jc s j j

c

q s j Jα γ γ γ ξ= + + + =∑  (49) 

and an instrumental variable is needed for 0
js .  We construct an instrument by estimating a 

binary logit model for each site, where the dependent variable is equal to one if the person visits 

the site and zero otherwise.  The logit probability is parameterized to include all the attributes of 

the site thought to be exogenous, such as travel costs and ambient water quality, and the 

parameter estimates used to construct predictions for each person’s probability of visiting each 

site.8  We define our instrument for 0
js  to be the average of the predictions for site j for all people 

in the sample.  We find this measure to be reasonably well correlated with 0
js  and plausibly 

exogenous since it is functionally related only to exogenous variables.  As Timmins and 

Murdock note the power of this instrument strategy depends on the degree to which the 

exogenous site attributes are good predictors of visitation shares.  We return to this topic when 

discussing our results below.   

C. Welfare Analysis 

In this section we describe how welfare analysis of changes in prices or attributes at the 

recreation sites proceeds.  As discussed by von Haefen et al. (2004) welfare analysis in this class 

of models is complicated by many factors, including the need to simulate behavior under 

                                                 
8 In practice we estimate the binary outcomes for all sites jointly and constrain the parameters on the explanatory 
variables to be the same across all sites.   
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counterfactual conditions.  The steps needed for analysis using the dual model are particularly 

challenging and involve subtle technicalities and many computational issues that at this stage of 

research are not fully understood.  The added complexity of computing general equilibrium 

welfare measures compounds the difficulties.  Thus we focus in this section on laying out the 

broad steps needed for computing welfare measures, forgoing many of the technical details in 

favor of a discussion of the conceptual challenges that we have solved and those that must still 

be examined.   

The first and second stages of the estimation algorithm provide summaries via posterior 

means of the utility function parameters and the error variances that constitute the unknown 

parameters in the model.  From these summaries preferences are known up to the values of the 

idiosyncratic errors – the εij’s in our notation.  Because the idiosyncratic errors are given a 

structural interpretation the utility function is random from the perspective of the 

econometrician, which implies that measures of compensating surplus for changes in prices or 

site attributes will also be random variables.  Thus the objective of welfare analysis is to estimate 

the expected value of an individual’s compensating surplus by integrating out the unobserved 

determinants of choice.  This requires that we simulate values of the idiosyncratic errors for each 

person many times and compute the welfare measure of interest for each simulated draw.  The 

average over the welfare measures for each simulated error draw provides an estimate of the 

expected welfare measure for each person.   

Conditional on a simulated value of the errors for each person all components of the 

preference function V(p,y;q,θ,ε) from equation (23) are known.  In general we can define 

compensating surplus (CS) implicitly using V(·) by 

 0 0 1 1( , , , , ) ( , , , , ),V p y q V p y CS qθ ε θ ε= −  (50) 
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where the change is being evaluated from baseline conditions (p0,q0) to new conditions (p1,q1).  

Solving for CS in equation (50) is complicated by the fact that the indirect utility function 

represents an endogenous regime-switching outcome:  changes in p or q may induce visitors to 

change the pattern of sites they visit as well as the frequency, and the solution algorithm must 

ensure that the comparison is made for utility values that reflect the appropriate (utility 

maximizing) demand regime under initial and changed conditions.  Von Haefen et al. (2004) and 

von Haefen and Phaneuf (2005) discuss this challenge in some detail and provide solution 

algorithms that are appropriate when preferences are additively separable.  Because the 

preference function we apply in this analysis is more general a different solution algorithm is 

ultimately needed. 

 Simulating the errors and solving the consumer’s problem are required for both partial 

and general equilibrium analysis and involve similar computation steps and techniques.  The 

general equilibrium calculation adds an additional layer of computation, however, in that the 

simulated behavior at new conditions must also be used to predict the elements of q1 that are 

endogenously determined by the aggregation of behavior.  Thus welfare calculation in this paper 

requires we address two methodological challenges:  solving the consumer’s problem when 

preferences are not additively separable, and predicting new levels of the endogenous attributes 

under changed conditions.  We must also address the non-linear way in which site quality 

attributes enter V (recall they enter indirectly through the virtual prices for the non-consumed 

goods as well as directly via the intercepts) to properly compute and interpret our welfare 

measures.   

 To illustrate these challenges and describe our initial solutions we first list out the explicit 

steps needed to compute partial and general equilibrium welfare measures using the specification 
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we are working with.  We then describe the steps in more detail.  Given the posterior means for 

the utility and error distribution parameters partial equilibrium welfare analysis for a single 

person i and a single draw of the errors involves the following steps: 

1) Draw values of the errors εi1,…,εiJ from the estimated distribution for the unobserved 

component of utility conditionally such that observed levels of demand at baseline 

conditions are replicated for person i.  That is, draw errors such that  

 0 0 0 0 ,iC C NC iN CC C iCz pα β π β ε= + + +  (51) 

 where the notation follows from equation (34), superscripts ‘0’ indicate that all price 

and quality variables are set to their baseline values, and 0
iCz  denotes the observed 

level of visits for person i to the set of visited sites C.   

2) Determine the total baseline consumer surplus from the consumed goods by 

integrating under the baseline demands in equation (52) between 0
iCp  and 0ˆ iCp , where 

0ˆ iCp  is the choke price for the set of goods C at baseline conditions.  Because the 

ordinary and compensating demand curves are the same in our case this is also the 

total Hicksian consumer surplus.   

3) Define the counterfactual scenario to consist of new prices and/or exogenous site 

attribute levels 1 1
1,...,i iJp p  and 1 1

1 ,..., ,Jα α  where  

 1 1 0
0 , 1,..., ,j c jc s j j

c

q s j Jα γ γ γ ξ= + + + =∑  (52) 

 and the 1 'jcq s  hold new levels of the exogenous attributes.  For a partial equilibrium 

analysis the original levels of the endogenous attributes (congestion) are maintained.   

4) Determine the new demand regime by first computing the new notional demands 

using 
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 *1 1 1

1

, 1,..., ,
J

ij j jk ik ij
k

z p Jα β ε
=

= + +∑  (53) 

and observe the pattern of positive and negative values for *1
ijz .  The combination of 

positive and negative values for each site is a candidate 1C  for the new demand 

regime, which must be evaluated and updated as described below.  Via the updating 

the new demand regime C1 is determined.   

5) Determine the total baseline consumer surplus from the consumed goods at the new 

demand regime by integrating under 

 1 1 1 1 1 1 1 1
1 1 1 1
iC C NC iN C C C iC

z pα β π β ε= + + +  (54) 

between 1
1
iC

p  and 1
1ˆ
iC

p , where 1
1ˆ
iC

p  is the choke price for the set of goods C1 at 

changed conditions. 

6) Compensating surplus for person i for this draw of the error is the difference between 

total surplus at initial and changed conditions. 

A few comments on this algorithm should be made.  First, the algorithm focuses on obtaining 

use-only values from changes in the levels of attributes by only including areas under the 

demand curves for sites that are actually visited.  A utility function approach as shown in general 

in equation (50) would also add surplus to the total for sites that were not visited.  We have 

chosen to focus on use value to aid in interpretation and avoid complexities associated with 

general equilibrium feedbacks interacting with non-use value computation.  Also, we are 

assuming in this algorithm that changes in observable attributes from q0 to q1 leave unobserved 

attribute levels unchanged.  That is, ξj is constant for all sites across all changes.  Depending on 

the scenario this may or may not be a realistic assumption.  
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For general equilibrium welfare measurement the same steps are needed, but we must 

also update the level of the endogenous attribute.  Define step 3' for the case of general 

equilibrium to be 

3’) Define the counterfactual scenario to consist of new prices and candidate site attribute 

levels defined by 1 1
1,...,i iJp p  and 1 1

1 ,..., ,Jα α  where  

 1 1 0
0 , 1,..., ,j c jc s j j

c

q s j Jα γ γ γ ξ= + + + =∑  (55) 

and the 1 'jcq s  hold new levels of the exogenous attributes.  For general equilibrium 

measurement an algorithm is needed that updates 1 1
1 ,..., ,Jα α  to 1 1

1 ,..., ,Jα α  where in this 

case  

 1 1 1
0 , 1,..., ,j c jc s j j

c

q s j Jα γ γ γ ξ= + + + =∑  (56) 

and 1
js  is the new equilibrium proportion of people who visit site j given the changed 

conditions.  We discuss the form that this updating takes below.   

These six steps each present varying degrees of computational and conceptual challenges.  

Step 1 is technical but quite similar to the data augmentation stage described above.  In addition 

the ideas associated with simulating unobserved errors consistent with observed choice are well-

explained in other work.  Thus in this version of the paper we do not discuss the details of this 

step further.  Step 2 and likewise step 5 are mechanical; again, we forgo additional discussion of 

these steps.  We do note however that the decision to rely on surplus measures computed as areas 

under compensated demand curves rather using expenditure or utility functions is a point worthy 

of further discussion, but one that is largely orthogonal to the topics directly under consideration.  

Thus the steps that we provide more discussion on include step 4 (determining the new demand 

regime) and step 3 as it relates to the general equilibrium calculation. 
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 Consider first how we determine the new demand regime given changed conditions.  We 

refer to equation (53) as providing a ‘candidate’ demand regime because the mapping between a 

set of positive and negative notional demands to the implied actual demands via the appropriate 

set of virtual prices does not guarantee that the resulting actual demands will be strictly positive.  

Thus the candidate regime may not be a member of the set of feasible demand regimes under the 

changed conditions.  In this case a mechanism is needed to find an alternative demand regime 

from the set of feasible regimes (i.e. those that do not result in negative actual demands) that 

maximizes utility.  We have not yet solved this problem formally and rely at this stage on an ad 

hoc updating rule.  Specifically, we complete step 4 via the following: 

 Observe the candidate regime 1C  using equation (53). 

 Compute the candidate actual demands 1
1
iC

z  for this regime and observe which, if any, of 

the demands are negative.   

 Update the candidate demand regime by setting to ‘non-consumed’ the goods observed 

with negative actual demands.  Label this C1 (the new regime) and use it in step 5. 

This is an ad hoc updating rule in that we have not proven that it results in the utility maximizing 

solution under the new price and attribute conditions.  Verifying this to be the case, or altering 

the updating strategy to find the utility maximizing solution, is an important area for subsequent 

research.   

 Step 3 is trivial in the partial equilibrium case but involves notable challenges for the 

general equilibrium case.  An updating rule is needed that re-equilibrates the site quality indexes 

(the intercepts) to reflect both the new exogenous attribute levels and the new resulting 

congestion level.  A similar challenge was faced by Timmins and Murdock (2007) for their site 

choice congestion application.  These authors rely on results shown by Bayer and Timmins 
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(2005) to show that their measure of congestion is the result of a unique sorting equilibrium, and 

that solving for new congestion levels in counterfactual experiments relies on a simple 

application of Brower’s fixed point theorem.  Since our measure of congestion and behavioral 

model differ from Timmins and Murdock these results do not transfer directly.  Thus at this stage 

of the research we are still investigating the formal properties of our equilibrium concept as well 

as computational methods for simulating new outcomes.   

 To explore this point further recall that our measure of congestion as given by equation 

(48) consists of the proportion of people who visit a particular site.  This is a convenient metric 

for our model in that the related concepts of virtual price and notional demands can in principle 

be used to predict this proportion for the sample under any configuration of prices and 

exogenous attribute levels.  Consider for example the following algorithm.  For iterations 

t=1,2,… complete the following steps: 

a) Define *t
ijz  by 

* 1 1 1

1

1 1

1

* 1
1

* 1

( ) , 1,..., , 1,..., ,
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b) At iteration T define the new equilibrium congestion level by 
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Understanding the formal properties of this mapping, and altering it as needed, is an important 

task for further research.9 

 The comments on solving the consumer’s problem and the equilibrium simulations 

suggest further work is needed on welfare measurement in this model.  Nonetheless we assess 

progress in the next section by describing results based on the IA lakes application.   

VIII. Empirical Results 

In this section we present empirical results for the IA lakes data set described above.  We 

emphasize that at this stage these findings are illustrative and exploratory.  Nonetheless several 

interesting results emerge that illustrate the importance of non-price equilibria concepts.   

 The model was run in MATLAB using the first stage Gibbs sampler and second stage 

regression decomposition to obtain an empirical representation of the posterior distribution for 

the unknowns in the model.  The first stage is computationally intense:  obtaining 7200 draws 

from the posterior distribution required nearly a month of run time on a new computer.  There 

are obvious improvements in our code that can speed this process, but it is nonetheless that case 

that large dimension models of this type continue to be computer-time intensive.  From the 7200 

draws obtained we discard the first 4000 as a burn-in period and construct our empirical 

distribution using every fourth draw thereafter, leaving 800 draws of the 258 first stage 

parameters for inference and subsequent analysis.10 

                                                 
9 In practice it is also necessary to check that the regimes implied by *t

ijz  are in the feasible set and, if not, adjust 
using the strategy discussed above.  This emphasizes the point that using predicted behavior to simulate new 
endogenous attribute outcomes also depends critically on the ability to solve consumers’ outcomes accurately and 
quickly.   
10 Multiple MCMC chains were run simultaneously on different computers during the month of run time to gauge 
convergence of the chains via comparisons.  We found strong evidence that burn-in was easily achieved by the 
4000th iteration.   
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 Table 3 contains a summary of the posterior distribution for the own- and cross-price 

parameters, and the top half of Figure 1 provides a histogram of the full marginal posteriors for 

both these parameters.  The price coefficients can be directly interpreted as the marginal effects 

of price changes on the notional demands, but their interpretation as related to the actual 

demands is more complex since the parameters enter the demand equations non-linearly.  

Nonetheless the signs and ratios of the posterior means and standard deviations seem reasonable.  

We find that own price effects are two orders of magnitude larger than the cross price effects, 

suggesting there may be little cross-site substitution on average.  We note that restricting all 

cross-price effects to be equal likely masks substantial heterogeneity among specific lakes and an 

important task for further research is to explore specifications that remain tractable in the number 

of parameters but also allow a greater deal of price substitution to appear.   

 Tables 4 and 5 present different strategies and results for decomposing the intercepts into 

observable and unobservable site attributes, and the bottom half of Figure 1 provides histograms 

of the full marginal posterior distributions for the parameters on the attributes for the 

specification in Table 5.  Once the empirical distribution for the intercepts is obtained in the first 

stage it is computationally fast and straightforward to investigate different specifications for the 

second stage.  We experimented with different water quality attributes as second stage 

explanatory variables and settled on the use of two:  secchi disk measurement and ambient levels 

of chlorophyll.  These two measures of site quality are potentially attractive in that their effects 

are observable to visitors.  Secchi readings reflect observable water clarity (assumed to be a 

positive attribute of lakes) while chlorophyll reflect visible algae and weed growth, which are 

correlated with nitrification.  We stress nonetheless that other specifications may be preferred.  
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We are however degrees-of-freedom limited.  The second stage regressions exploit variation 

over sites, so estimates are based in our case on only 128 observations.   

 The results are illustrative of both the difficulties and importance of accounting for 

endogenous attributes such as congestion.  Table 4 contains our straw-man results.  Here he have 

naively included an obviously endogenous variable (proportion of people visiting each site) in 

the equation and used OLS to estimate the parameters.  We find a negative effect on congestion 

but have no resolution on our site quality estimates.  In contrast the results in table 4 are much 

more promising and intuitive.  We find a large and negative coefficient on congestion and a 

solidly significant (from a classical perspective) of the correct sign on chlorophyll.  The sign on 

secchi is appropriately positive but at best marginally significant.  From this we cautiously 

conclude that our instrument strategy is viable, and that congestion matters – probably more than 

exogenous attributes such as ambient water quality and perhaps as much as own price effects.  

This finding is very similar to Timmins and Murdock (2007), who find using their preferred 

instrument strategy large and significant disutility from congestion.11 

A primary objective of estimating the parameters of the structural model is to examine 

both partial and general equilibrium welfare measures.  To illustrate the capabilities of the model 

in this dimension we again consider four counterfactual scenarios outlined in section IV, each 

designed to illustrate welfare measures of potentially different types.  The scenarios again are: 

Scenario 1: Close nine sites representing the most heavily visited lakes in each of nine 

regions of Iowa.   

Scenario 2: Close nine sites representing moderately visited sites in each of nine regions 

of Iowa.  

                                                 
11 Table 7 presents the posterior means and standard deviations for the sites-specific intercepts and variance terms.  
These are interesting only to note the heterogeneity across sites in both sets of parameters.   
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Scenario 3: Improve water quality throughout the state such that all lakes obtain at least 

the rating of ‘good water quality’.  According to technical documents this corresponds to 

a minimum secchi reading of 2.17 meters and maximum chlorophyll reading of 8.26ug/l. 

This scenario involves improvements at for at least 114 lakes. 

Scenario 4: Improve a set of seven Iowa Department of Natural Resources ‘target lakes’ 

to water quality conditions given by a minimum secchi reading of 5.7 meters and 

maximum chlorophyll reading of 2.6ug/l. 

The first scenario is major in that it involves the loss of the nine primary lakes in the state, while 

the second is arguably minor in that the lakes are minor regional facilities.  In both cases we 

proxy the loss of the sites by setting travel costs above the choke prices for all visitors in the 

sample.  The third and fourth scenarios are minor but widespread and major but localized, 

respectively.   

 Point estimates for compensating surplus measures are shown in Table 6, with sample 

mean and median partial equilibrium estimates aligned on the left and the general equilibrium 

measures aligned on the right.  The estimates are seasonal per person measures; for a rough per 

trip measure one could normalize by the mean or median total annual trips taken (11.46 and 7 

trips, respectively).  We find plausible estimates for the partial equilibrium estimates in all cases.  

The loss of the nine popular sites leads to a large mean welfare loss of over $600 per person per 

season.  The much smaller median loss of nearly $68 per person suggests the mean is skewed by 

individuals with high valuations for the lost sites.  This is sensible in this model and matches our 

intuition:  people who do not visit the lost sites, or do so only infrequently, do not suffer a 

surplus loss when the sites are eliminated.  This is also seen in scenario 2, where the sample 

average loss from closing 9 moderately popular sites is nearly $52 per angler and the median is 
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zero.  Closing the less important sites impacts less than half the people in the sample, suggesting 

that most suffer no surplus loss from the closures.   

 Scenarios 2 and 3 examine quality improvements of different intensity and spatial extent.  

Here we find that smaller, more widespread quality improvements have a larger welfare impact 

(sample mean and median of approximately $208 and $147, respectively) than their localized but 

larger counter parts ($50 and $17).  In both cases the positive median suggests benefits are 

spread throughout the sampled population.   

 The general equilibrium welfare measures also seem plausible for all scenarios, though 

we caution that these measures are preliminary in that further research is needed to understand 

the properties of re-equilibrating algorithm.  For the site loss scenarios in particular it is unclear 

that a new sorting equilibrium is achieved; evidence of this is stronger for the quality changes.  

Nonetheless some intuition emerges.  Using the means in scenario 1 we find general equilibrium 

welfare losses that are 15% larger than their partial equilibrium counterpart.  Similarly for 

scenario 2 we find general equilibrium losses that are 11% higher.  This reflects the fact that the 

site closures cause a direct welfare effect via the lost choice alternatives as well as an indirect 

effect on the remaining sites via increased congestion.  The intuition for the direction of the 

general equilibrium effect is less clear for the quality changes.  If improvements are made to 

moderately popular lakes, and by attracting visitors from more popular lakes decreases 

congestion, the general equilibrium effect may be larger.  In contrast improvements at currently 

congested sites that cause more people to go to these sites may lead to smaller general 

equilibrium welfare improvements.  For our scenarios we find general equilibrium effects that 

suggest smaller improvements when re-sorting is accounted for.  In particular the welfare effects 
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are less than half as large when the indirect effect of changes in congestion at the lakes is 

explicitly accounted for.   

IX. Discussion 

 Our objective in this paper has been to explore notion of non-price equilibria and 

feedback effects in non-market valuation using both CGE and econometric methods.  We have 

specifically focused on defining in general the concept of non-price equilibra, investigating the 

circumstances under which they might be empirically important for non-market valuation, and 

exploring how to measure the effects if they exist.  As we stressed at the outset this paper is the 

initial rather than the final step in this direction, and it leaves much unresolved.  Nonetheless 

several insights have emerged along with promising leads for continuing this line of research.  

To conclude the paper we summarize the findings, lessons, and speculations that have emerged 

from this project and identify specific areas for further research, placing them in the context of 

the ‘frontiers’ theme of this paper.   

 While we have categorized the types of non-price equilibira that may arise using the 

concepts of simple and complex sorting equilibrium it is difficult to say much more of 

operational value that is not context specific.  Nonetheless there is a fairly general set of issues 

that emerge from our experience and need to be resolved in any application of this type.  These 

include, for example, specifying the mechanism through which aggregate behavior translates into 

an endogenous attribute, choosing a tractable parameterization for this mechanism (i.e. the 

transmission function), and determining the computational and conceptual properties of the 

equilibrium associated with the transmission function.  We have provided examples of these 

issues as they relate to congestion in a fairly general model of seasonal multiple site recreation 

demand. 
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 To investigate congestion in the recreation context we have taken the fairly unusual step 

of using both CGE and econometric modeling approaches.  Our intent, and that of the workshop 

organizers who suggested and helped assemble the research team, was to consider the issue from 

different perspectives using what we hoped would be complementary tools.  This proved to be a 

good decision and gives an example of the scientific value of coordinated experiments and 

replication exercises.12   

The CGE model functioned as a laboratory which, when calibrated to our application, 

allowed us to explore how partial and general equilibrium results are sensitive to the magnitude 

of the congestion effect and the parameterization of the transmission function.  Both of these 

dimensions of the problem turned out to be important.  The flexibility of this approach, both in 

decomposing the results of counterfactual scenarios and performing sensitivity analyses, makes it 

a valuable tool when the modeling exercise demands that we represent multiple, interacting 

channels of influence.  The role for this type of analysis becomes even clearer when one 

considers that we have chosen a relatively simple example of a non-price equilibrium as our 

application.  A necessary precursor to any experiment in which we expect to make quantitative 

inferences from models with complex interactions between market and non-market activities is a 

period of intuition-building.  The CGE framework is made for this type of activity.   

Beyond this, the marriage of CGE and techniques from non-market used in this 

experiment seem to confer ancillary benefits in a number of areas.  The calibration procedure 

used in the CGE exercise incorporates information on unobserved heterogeneity in consumer 

                                                 
12 As a second example that is also related to the concept of general equilibrium in non-price space see the papers by 
Marty Smith and Larry Crowder (2005), and David Finoff and John Tschirhart (2005) that were commissioned for 
the workshop Linking Economic and Ecological Models for Environmental Policy Analysis, Santa Fe, NM, April 
2005.  Smith and Crowder consider the problem of integrating fish population and effort models using a reduced 
form approach while Finoff and Tschirhart take a structural approach.  Both papers deal with the concepts of 
equilibrium fish populations and catch effort and are therefore directly relevant to our discussion.   
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tastes from the empirical model in a way that is not standard practice in the CGE literature, 

where individual-level variation is typically subsumed by the preference specification for a 

representative agent.  Furthermore the solution techniques employed in contemporary CGE 

modeling appear to have promise as a strategy for addressing the challenges of welfare analysis 

in corner solution models as described above and by von Haefen et al. (2004).  This is an area of 

research worthy of additional pursuit.   

 The evidence from the empirical exercise also supports the notion that general 

equilibrium effects may be important in the application we consider.  Similar to Timmins and 

Murdock (2006) we find negative effects of site congestion that appear to be substantial.  While 

it is difficult to consider the congestion effect independently from other attributes it seems fair to 

extrapolate from our findings that congestion plays a role much larger than cross price effects, 

somewhat larger than direct water quality effects, and perhaps as great as own price effects in 

our model and application.  These statements need to be conditioned, however, on the form of 

the congestion effect included.  In using the proportion of people who visit a site as our measure 

of congestion we have ignored two potentially important determinants of that attribute:  the 

intensity of use as well as the timing of use.  Including these involves a re-parameterization of 

the model and transmission function, which are obvious directions for further research in both 

CGE and econometric settings.   

 The welfare calculations from the empirical model are sensible and intuitive and suggest 

that general equilibrium welfare measures can differ from their partial equilibrium counterparts 

in ways that have policy relevance.  We again, however, must add caveats to this statement.  The 

computational steps needed to compute both partial and general equilibrium welfare measures in 

this model are not yet fully understood and are the subject of ongoing research.  Still, we have 
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enough confidence in the results to conclude that feedback effects exist and for some 

counterfactual scenarios will cause divergence between the two welfare measures.  The size and 

direction of the divergence will depend on the specifics of the scenario.  This finding is also 

supported by the CGE modeling.  Thus the evidence directly supported or implied by our 

modeling and results is that congestion matters, its effect is large enough to cause divergence 

between general and partial equilibrium welfare measures, and frameworks exist or are in 

development that can empirically measure the size and policy significance of these divergences.   

 In addition to this direct evidence several lessons and observations have emerged from 

the experience of carrying out this project.  Perhaps most valuable is the appreciation gained of 

the combined technical and conceptual challenges that are inherent in addressing this type of 

problem.  Our optimistic sense is that the computational challenges will not be limiting.  The 

algorithms undeveloped at this stage are solvable either with brute computer force or clever 

programming and numerical analysis (probably in the end both).  Perhaps more interesting will 

be the conceptual issues.  We have found it challenging to rely on intuition to gauge the 

‘reasonableness’ of results when feedback effects are present in the models.  More to the point, it 

is not clear how to best carry out robustness and reality checks.  For example, we discussed 

above that the transmission function used in our empirical analysis is restrictive in that it ignores 

the timing and intensity of site usage.  How might we examine how robust our results are to this 

obvious simplification?  More generally, how can researchers do sensitivity analysis on the 

numerous parametric stands that will need to be taken in order to specify a transmission function 

for the general equilibrium attribute?  More subtly, how can we gauge the impact of ‘limit 

effects’ or the potential need for non-linear/discontinuous transmission functions?  In our model, 

for example, closing a recreation site drives congestion for that site to zero.  The zero congestion 
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is mechanically transmitted to the rest of the model as an improvement in a site attribute – 

something that does not make intuitive sense as the result of a site closure.  A less extreme 

examination of limit effects might be concerned with the range of exogenous data values that 

provide good endogenous attribute predictions via the transmission function versus those that 

extrapolate beyond the range of the function’s ability to accurately predict.  While this may seem 

a minor point it will be critical for gauging the accuracy of large-scale policy counterfactuals – 

exactly the type of policy scenarios for which we might expect re-equilibration to matter.   

 To these challenges we can add the fact that we have thus far only considered a simple 

sorting equilibrium application.  Complex sorting equilibria add an additional layer of modeling 

to the mix, requiring that the analyst also take a stand on the form of the natural or other process 

that simultaneously (with behavior) determines the level of the endogenous attribute.  Finally, we 

might wonder if multiple and interacting endogenous attributes are at play:  for example, it may 

be that both congestion and fishing catch rates are endogenously determined and that these 

factors might interact in distributing peoples’ choices.  This notion presents conceptual, 

computational, and econometric challenges that could fill a career.   

 These challenges notwithstanding, our experience in this project has caused us to be 

optimistic about our ability to ultimately provide policy relevant inference on general 

equilibrium welfare measures arising from non-price equilibria.  The work reported on represents 

progress in several technical areas and suggests avenues for further research in these areas.  For 

example, the Lee and Pitt model as applied here is at the forefront of modeling the demand for 

quality differentiated goods.  Its framework provides the potential for capturing rich parametric 

and stochastic substitution between commodities while allowing for non-additively separable 

preferences.  Further research in this area could examine specifications that relax the independent 
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errors assumption as well as increase the flexibility with which we characterize cross-price and 

income effects.  The latter would involve a specification that moves away from the incomplete 

demand system approach in favor of explicitly modeling expenditures on outside goods as a 

substitute commodity – an approach that might also allow the inclusion of non-users in the 

model.  Econometrically, the approach we have presented draws on three strands of literature:  

the classical use of Bayesian simulation methods, the true Bayesian econometric paradigm, and 

the tradition in empirical industrial organization of using two stages to deal with unobserved 

product attributes and endogenous attributes.  Our exploitation of these ideas to date has been 

mainly informal and intuitive.  There are obvious gains to a more careful (and formal) integration 

of these three econometric approaches in this class of problem.  One particular avenue would be 

the use of informative priors to mitigate the second stage estimation degrees of freedom problem 

that will be present in most recreation applications, where it is unusual to have data on more than 

100 recreation sites.   

 Progress in these technical areas will allow more focused examination of the conceptual 

challenges we have identified.  Joint calibration and econometric studies seem well suited for 

systematically examining many of these issues.  Likewise, progress in other literatures (such as 

bio-economic modeling of spatial fisheries – see Sanchirico, Smith, and Wilen (2007), also 

commissioned for this workshop) will provide insights and techniques that will be directly 

applicable to studying non-price equilibria in non-market valuation.   
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Table 1: PE and GE welfare estimates by policy scenario and intensity of congestion effect, 
Totals specification 

Half Congestion Effect Full Congestion Effect Double Congestion Effect 

Scenario PE GE %Diff PE GE %Diff PE GE %Diff 

1 -552.3 -549.1 -0.6 -524.5 -527.2 0.5 -469.0 -506.7 7.4 

2 -195.4 -193.3 -1.1 -193.3 -189.9 -1.8 -189.0 -184.2 -2.6 

3 157.7 126.2 -25.0 153.6 106.7 -44.0 145.3 88.1 -64.9 

4 59.7 49.4 -20.9 58.2 41.8 -39.2 55.2 32.8 -68.1 

 

 

 

Table 2: PE and GE welfare estimates by policy scenario and 
Totals vs. Shares Congestion Specification, Full Congestion Effect 

Totals Specification Shares Specification 

Scenario PE GE %Diff PE GE %Diff 

1 -524.5 -527.2 0.5 -580.0 -618.3 6.2 

2 -193.3 -189.9 -1.8 -197.6 -212.1 6.9 

3 153.6 106.7 -44.0 161.9 172.2 6.0 

4 58.2 41.8 -39.2 61.2 56.0 -9.2 
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Table 3:  Summary of Selected Parameters from Posterior Distributions:  1st Stagea 

Parameter Posterior Mean Posterior Std. 
Deviation 

Mean/Std. 
Deviation 

Posterior 
Median 

βown -0.046 0.0015 -30.596 -0.0459 
βcross 0.0002 0.000 20.10 0.0002 

aCalculated using 800 simulated draws from the posterior distribution.  Posterior summaries for intercepts 
and variances shown in a subsequent table.   

 
 
 

Table 4:  Summary of Selected Parameters from Posterior Distributions:  2nd Stage OLS 
Decompositiona 

Parameter Posterior Mean Posterior Std. 
Deviation 

Mean/Std. 
Deviation 

Posterior 
Median 

γ0 -5.435 0.2015 -26.96 -5.429 
γsecchi 0.0391 0.0862 0.453 0.0411 

γchlorophyll 0.0013 0.0017 0.744 0.0014 
γcongestion -13.34 2.14 -6.22 -13.32 

aCalculated via OLS regressions of each first stage draw of the intercepts on the site characteristics.  
Summaries are calculated from the resulting 800 sets of 2nd stage estimates.   

 
 
 

Table 5:  Summary of Selected Parameters from Posterior Distributions:  2nd Stage IV 
Decompositiona 

Parameter Posterior Mean Posterior Std. 
Deviation 

Mean/Std. 
Deviation 

Posterior 
Median 

δ0 -4.081 0.2225 -18.34 -4.072 
δsecchi 0.1122 0.0867 1.294 0.1128 

δchlorophyll -0.0064 0.0019 -3.36 -0.0064 
δcongestion -55.91 4.29 -13.00 -55.78 

aCalculated via IV regressions of each first stage draw of the intercepts on the site characteristics.  
Summaries are calculated from the resulting 800 sets of 2nd stage estimates.   
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Table 6: Point Estimates for Welfare Effectsa 

Partial Equilibrium 
Estimate 

General Equilibrium 
Estimate Counterfactual Scenario Sample 

mean 
Sample 
Median 

Sample 
Mean 

Sample 
Median 

Scenario 1:  Loss of nine highly 
popular sites. 
 

-$630.40 -$67.64 -$726.11 -$142.84 

Scenario 2:  Loss of nine 
moderately popular sites 
 

-$51.86 $0.00 -$58.21 -$5.08 

Scenario 3:  Widespread small 
quality improvements 
 

$207.92 $146.01 $87.28 $61.16 

Scenario 4:  Localized large quality 
improvements 
 

$50.23 $17.14 $21.09 $7.57 

aMeasured in dollars per active lake visitor person per year 
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Table 7:  Posterior Summary for Intercepts and Variance Parameters 

Site Posterior Mean 
αj 

Posterior std. 
Deviation αj 

Posterior Mean 
2
jσ  

Posterior Std. 
Deviation 2

jσ  

site1 -6.853 0.5698 21.6205 2.8972 
site2 -3.9804 0.5177 16.5106 2.4113 
site3 -3.5416 0.472 6.5615 1.2099 
site4 -4.5809 0.5179 7.9619 1.3855 
site5 -7.1232 0.6516 25.9651 3.5893 
site6 -7.4964 0.7112 49.7431 5.6995 
site7 -4.6257 0.4944 8.6021 1.4533 
site8 -7.5566 0.7139 43.9953 5.5753 
site9 -7.0336 0.721 98.8242 10.8453 
site10 -4.0317 0.7095 64.0104 7.6369 
site11 -7.2933 0.7324 49.9359 6.0285 
site12 -3.9824 0.5992 19.1432 2.7964 
site13 -3.9182 0.5773 11.292 1.9846 
site14 -6.643 0.6569 26.8866 3.6205 
site15 -3.5827 0.5861 21.062 3.005 
site16 -7.0708 0.6815 56.1644 6.6652 
site17 -4.594 0.6589 26.8254 3.8257 
site18 -7.2464 0.6727 26.7819 3.6761 
site19 -3.5336 0.5347 16.9989 2.4502 
site20 -5.8983 0.5825 17.0884 2.6514 
site21 -6.4162 0.7842 124.3539 13.5503 
site22 -4.1526 0.6058 18.1337 2.8325 
site23 -5.2395 0.7264 116.3501 12.4506 
site24 -3.4916 0.4825 10.2819 1.6842 
site25 -5.0832 0.6614 22.852 3.4256 
site26 -6.3228 0.5336 19.2275 2.6721 
site27 -4.5309 0.6175 31.509 4.0606 
site28 -7.1968 0.6494 27.5623 3.7272 
site29 -3.6768 0.5184 9.8924 1.8605 
site30 -6.8934 0.6903 32.5796 4.5013 
site31 -6.1151 0.6361 21.9603 3.3361 
site32 -3.5645 0.6951 74.1869 8.4062 
site33 -7.0511 0.7023 37.253 5.6784 
site34 -3.143 0.3565 3.0317 0.6714 
site35 -5.7108 0.667 33.1604 4.24 
site36 -2.5374 0.369 4.0039 0.7492 
site37 -7.7321 0.6936 52.9631 6.14 
site38 -4.6876 0.4236 5.2954 0.9961 
site39 -6.2413 0.6191 15.0001 2.5055 
site40 -5.7511 0.6308 27.362 3.7193 
site41 -5.5443 0.5887 16.054 2.2652 
site42 -6.9314 0.6694 21.339 3.3877 
site43 -7.01 0.6769 26.6037 3.9212 
site44 -8.4337 0.7326 41.1814 5.4627 
site45 -3.8146 0.3784 3.303 0.7044 
site46 -5.4035 0.6383 23.6429 3.6075 
site47 -3.9198 0.5969 18.939 2.8882 
site48 -7.5834 0.6577 37.7102 4.9194 
site49 -7.3969 0.7128 39.0452 5.3381 
site50 -6.0868 0.6992 28.6422 4.2218 
site51 -6.0373 0.6134 25.8125 3.5502 
site52 -6.5316 0.6692 35.1292 4.7759 
site53 -5.8525 0.71 40.6978 5.4499 
site54 -4.6094 0.6228 15.7547 2.4939 
site55 -5.317 0.6624 28.9138 4.0891 
site56 -7.4607 0.6787 26.8651 3.8537 
site57 -6.7462 0.6406 25.4104 3.5819 
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Table 7:  Posterior Summary for Intercepts and Variance Parameters 

Site Posterior Mean 
αj 

Posterior std. 
Deviation αj 

Posterior Mean 
2
jσ  

Posterior Std. 
Deviation 2

jσ  

site58 -6.8167 0.8778 69.6435 8.7107 
site59 -6.6254 0.7072 92.0742 10.3736 
site60 -7.13 0.6678 31.5164 4.32 
site61 -4.0556 0.6159 18.9596 2.9636 
site62 -7.1759 0.7303 38.1587 5.3751 
site63 -5.6861 0.8047 37.9029 5.6098 
site64 -3.1248 0.476 4.2605 0.981 
site65 -2.4601 0.5749 14.8261 2.3857 
site66 -4.2242 0.5623 11.2038 2.0147 
site67 -6.3264 0.7774 41.5089 5.939 
site68 -6.4949 0.8175 38.582 5.652 
site69 -5.6505 0.7156 21.5728 3.3974 
site70 -3.728 0.5263 11.1625 1.9554 
site71 -4.483 0.7614 44.4682 6.0189 
site72 -7.1417 0.687 29.4436 4.2063 
site73 -4.5442 0.551 10.333 1.7792 
site74 -5.2364 0.678 32.8502 4.4143 
site75 -5.0529 0.7638 33.7347 5.1076 
site76 -8.4861 0.8132 44.8233 6.2416 
site77 -3.2839 0.4585 4.7608 1.0382 
site78 -7.1689 0.6732 20.3329 3.2558 
site79 -2.5307 0.4015 1.7805 0.4951 
site80 -6.0551 0.553 12.0678 1.9475 
site81 -3.7554 0.5977 11.5057 2.2217 
site82 -5.5906 0.5478 9.5444 1.7068 
site83 -4.1143 0.5724 9.1745 1.7158 
site84 -5.1554 0.6426 14.0223 2.3759 
site85 -3.8837 0.5858 10.5073 2.009 
site86 -2.7552 0.535 4.9138 1.1047 
site87 -6.5936 0.7421 35.0382 4.8049 
site88 -3.7051 0.5349 8.819 1.6471 
site89 -7.3492 0.7675 25.5976 4.1353 
site90 -7.8308 0.7873 44.3108 6.075 
site91 -3.7418 0.6025 12.2716 2.0722 
site92 -7.8576 0.8142 63.3195 8.7261 
site93 -6.728 0.8084 30.2937 4.7713 
site94 -6.9139 0.7567 36.3674 5.1407 
site95 -8.0552 0.8184 110.3577 11.8634 
site96 -7.7719 0.7616 33.6603 4.7278 
site97 -7.8101 0.8437 115.6849 13.7802 
site98 -7.7368 0.7068 27.2369 4.0248 
site99 -8.8789 0.8622 50.4859 7.1706 

site100 -6.029 0.5733 8.7578 1.6529 
site101 -5.7964 0.7613 135.7294 15.2796 
site102 -5.7679 0.664 13.4248 2.5549 
site103 -3.9927 0.7187 23.3549 3.8011 
site104 -4.9423 0.6581 18.629 3.0432 
site105 -5.0798 0.7101 17.3794 3.1948 
site106 -6.2556 0.6396 13.7435 2.4165 
site107 -6.3561 0.6834 17.4409 2.8836 
site108 -6.0069 0.8007 18.8009 3.4047 
site109 -7.1128 0.8412 65.8239 8.657 
site110 -7.3213 0.7809 35.4324 5.141 
site111 -4.6368 0.5793 8.9574 1.75 
site112 -7.9943 0.7794 51.582 6.5441 
site113 -4.1814 0.6463 10.4926 2.0675 
site114 -2.5684 0.467 5.0929 1.0555 
site115 -7.9598 0.8528 51.4775 6.9238 
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Table 7:  Posterior Summary for Intercepts and Variance Parameters 

Site Posterior Mean 
αj 

Posterior std. 
Deviation αj 

Posterior Mean 
2
jσ  

Posterior Std. 
Deviation 2

jσ  

site116 -8.6359 0.9268 37.511 6.1373 
site117 -5.28 0.7707 29.4527 4.494 
site118 -9.9038 0.9543 64.0853 8.7494 
site119 -5.6115 0.7516 30.5258 4.6671 
site120 -7.2441 0.8385 47.4747 6.4673 
site121 -4.7558 0.9157 98.7864 12.4806 
site122 -7.4532 0.7654 25.5415 3.7944 
site123 -5.3224 0.5757 9.008 1.5731 
site124 -3.5836 0.541 3.6977 0.9531 
site125 -4.1893 0.6111 11.6769 2.0662 
site126 -3.9118 0.6452 8.4505 1.7459 
site127 -4.6318 0.7037 13.6563 2.4983 
site128 -5.0304 0.6462 18.0508 2.8207 
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Figure 1:  Histograms Showing Empirical Distributions 
 
 

 
 
 

 




