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Abstract 
 
A semi-parametric discrete choice method is proposed to recover welfare measures from 
individual choice data. The estimation procedure and properties of the proposed welfare 
estimator are discussed. The proposed method is compared with the traditional binary choice 
models. An application that measures benefits of recreation trips is presented. Our results suggest 
that the proposed semi-parametric method adds flexibility to the discrete choice modeling and 
provides a more precise benefit measure than the traditional parametric methods.  
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1. Introduction 
 

This paper proposes and illustrates a semi-parametric estimator to recover Hicksian 

welfare measures from individual discrete choice data.  Our application is to a discrete response 

random utility model initially outlined for revealed preference travel cost models by Smith and 

Kaoru [1986].  However, the findings also have direct relevance for discrete response contingent 

valuation surveys.  Our results indicated that the semi-parametric method does not appear to 

compromise the precision in benefit estimates as it reduces the restrictions implied by 

conventional parametric methods for these models (i.e. probit and logit).  Our non-parametric 

method is a cubic smoothing spline function and includes the traditional linear specification as its 

special case. 

This method is not the only flexible approach for estimating binary choice models.  

However, when non-parametric methods have been evaluated in sampling studies, the results 

suggest they are usually inferior to a conventional logit, based on the mean squared error and 

bias in estimates of a model's parameters (see Manski and Thompson [1986] and Horowitz 

[1992]).  Only when there is appreciable heteroscedasticity do the simulation results offer strong 

support for the non-parametric methods (Klein and Spady [1993] and Li [1996]).  These findings 

seem to be confirmed in a few valuation studies that apply non-parametric or semi-parametric 

methods to welfare measurement in binary choice models (Chen and Randall [1997], Creel and 

Loomis [1997], An [2000], Cooper [2002], and Belluzzo [2004]). Thus, the literature suggests 

there is clear scope for methodological improvements.   

 

2. Semi-Parametric Discrete Choice Welfare Estimators 

When binary response models are used to define welfare measures choices are assumed 
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to result from a constrained optimization process.  To express this assumption in formal terms, 

let yi be the choice variable that yi=1 if a commodity (or more generally an object of choice) is 

selected by individual i (with a purchase cost of ti) and yi=0 otherwise.  ti defines a lower bound 

for that individual's WTP.  Individual i will purchase the object of choice at price ti yields greater 

utility than a situation of no purchase.  Thus, the difference in utility associated with the two 

alternatives, ∆vi=V(1,Ii-ti;Zi)-V(0,Ii;Zi)≥0, where V is the indirect utility function, provides the 

link between choices and the optimization model.  Ii is income, and Zi is a vector of values of 

other determinants in the utility function.  If we assume ∆vi is a random variable (due to 

unobserved heterogeneity in preferences), then the probability of yi=1 (purchase) can be directly 

related to the induced probability distribution for WTP as follows. 

Prob(purchase) = Prob(yi =1) = Prob(∆vi ≥ 0)  

    =Prob(WTPi≥ ti) = 1 - GWTP(ti),     (1) 

where GWTP(.) is the distribution function for WTP.  Conventional practice uses equation (1) 

with a specification for ∆vi to define the likelihood function.  For example, if ∆vi is assumed 

linear, ∆vi = α – βti + Zi′γ + ei, and the random variable ei is assumed to follow the logistic 

(normal) distribution, then the logit (probit) model results.  The associated expected WTP has a 

simple formula, E(WTPi)= β
γα iZ ′+ , as detailed in Hanemann [1984].  With more complex 

parametric models the expression E(WTP) depends on the restrictions imposed on GWTP(.) 

through distributional assumptions or the choice function (Hanemann [1999]). 

An important assumption to simplify welfare measurement with this model is a constant 

marginal utility of income (β).  A cubic smoothing spline reduces the restrictions imposed on the 

modeling structure by focusing on the smoothness of the choice function with respect to the price 

variable (ti) and thus can relax this assumption.  To consider how this is accomplished, let the 
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nonstochastic component of the utility difference function ∆v be f(t)+Z′γ, where  f is a function 

of ti and is assumed to belong to the second order Sobolev space,   is a 

function space that all functions on [a,b] in the space have the first derivative absolutely 

continuous and the second derivative square integrable. By combining a smoothness criterion 

and the traditional maximum likelihood criterion, a penalized likelihood function (O'Sullivan et 

al. [1986]) is formed.  With a logistic link function, this penalized likelihood function can be 

written as equation (2). 
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The first summation in equation (2) is the usual log-likelihood function for a logit model 

expressed in terms of the semi-parametric choice function f+Z’γ.  The integral in the second part 

of the penalized likelihood function is the roughness function constraining smoothness of f in 

terms of the stated cost, ti.  The smaller the value of this term, the smoother is f.  λ is the 

smoothing parameter controlling the relative importance of the two terms in (2).  As λ is allowed 

to become arbitrarily large, the second term must approach zero.  This outcome implies a zero 

second derivative and a linear fit.  Thus, the optimization problem in (2) includes a linear 

specification as a special case.  The penalized likelihood function can be regarded as a 

generalized ridge regression model.

Equation (2) extends O'Sullivan et al. [1986].  As a result, their findings indicating that, 

for a given value of λ, the solution to a non-parametric logit model (described as (2) without the 

parametric part of Z′γ) exists and it is a natural cubic smoothing spline function.  Thus, f is a 

piecewise cubic polynomial with two continuous derivatives within the data range and a linear 

function outside the data range.  The solution to γ is the typical logit estimator. For a given value 
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of λ, the model can be estimated by the iteratively reweighted least squares (IRLS) method.  The 

optimal value of the smoothing parameter λ can be determined by data driven methods such as 

generalized cross validation (GCV; Craven and Wahba [1979]).  The selection of λ is equivalent 

to choosing the best spline estimator among a class of alternatives.  An IRLS estimation 

procedure that iteratively estimates f and γ is proposed and the procedure, beginning by 

estimating fi with γ = 0, is outlined as follows. 

Step 1. Fit a logistic cubic smoothing spline using the procedure by O'Sullivan et al. 

(1986); save predicted fi.1

Step 2. Estimate γ given fi=predicted fi from step 1; save γ. 

Step 3. Repeat step 1 with Zi′γ updated by the estimated γ in step 2; save new predicted fi. 

Step 4. Repeat steps 2 and 3 until the predicted fi+ Zi′γ converges; save predicted fi+Zi′γ 

and optimum λ. 

Using the definition for the expected WTP (i.e. E(WTP)= ) an 

estimator for WTP can be derived from this model by substituting the estimated logistic 

probability distribution function into 1-G
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The estimated expected WTP involves integrating nonlinear function of f(x) using the estimated 

cubic smoothing spline function.  The primary large sample property of this non-parametric 

WTP estimator can be described as follows:2

 

Theorem 1:  Let W(f) be defined as equation (3).  Let f0 be the true function and fnλ be the 
                     
1 When calculating GCV, the degrees of freedom must be modified to take into account the parametric portion of the 
model (Z′γ). 
2 The values of the vector γ can be assumed known or be estimated. Theorem 1 holds in either case. 



 
6

unique maximizer of (2).  If W(f) is finite, then lim Prob(|W(fnλ)-W(f0)|≤δ)=1, where δ is a small 

constant. 

 

Theorem 1 ensures the consistency of the WTP estimator derived from the proposed semi-

parametric discrete choice method.  The proof of the theorem is given in the Appendix A. 

An important distinction in the parametric and semi-parametric estimates arises in the 

computation of estimates for E(WTP).  For the former, E(WTP) will generally have a closed 

form expression, while with semi-parametric estimates it is a numerical integral based on the 

estimate of GWTP(.).  This implies a more complex form for the mean square error (MSE) of 

WTP estimator.  Substituting the expressions for the cubic smoothing spline's estimated WTP 

and the true WTP into the definition of MSE, we have equation (4), with the subscript i omitted 

for simplicity. 
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The first part of equation (4) is the estimated expected WTP that is truncated at [a,b] and the 

expression in the parenthesis is the true expected WTP.  Equation (4) can be considered an 

integrated loss function in that it evaluates the overall fit of the probability curve--not the 

estimator of f itself.  As a result, the estimates used to generate WTP measures are evaluated by 

their global performance. 

 

3. Empirical Comparison of Discrete Choice Welfare Measures 

To illustrate the method, we used a subset of the data collected in a household survey for 

a study of recreational site choices in Monongahela River Basin in Pennsylvania (Smith and 
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Desvousges [1986]). Three binary choice models, logit, probit and our modified cubic smoothing 

spline, are applied to analyzing the decision to visit the site called The Point at Smithsfield 

Bridge.3 In the data, there were 945 visits to recreation sites near Monongahela River and 222 of 

them were made to The Point. The estimation results of the choice models are given in Appendix 

B. The average per-trip Hicksian benefit is computed; that is the WTP (as presented in the 

previous section) in addition to the round-trip costs for a site visit. Empirical distributions of the 

benefit estimates are constructed using the bootstrap-based method with 500 repetitions. The 

results are reported in Table 1. 

All three models yield similar median benefit estimates.  The WTP distributions for logit 

and probit models are right skewed. The distribution of semi-parametric welfare estimates is less 

skewed and appears to have a much smaller standard deviation.  The 90% confidence intervals 

for each of the estimators, constructed based on the Efron’s percentile method, are also reported.  

All three binary choice models produce similar welfare measures. The differences are 

statistically insignificant because of the overlapped confidence intervals. However, the 

parametric estimates would seem to be less efficient than the estimate from the semi-parametric 

model. Recall that the semi-parametric model includes the linear logit model as its special case 

when the smoothing parameter λ approaches infinity. In this case study, the optimum λ value 

selected by the GCV function tends to be small indicating that the underlying marginal utility of 

income is not constant. A flexible cubic smoothing spline function to allow heterogeneous 

marginal utility of income appears to improve the estimation precision of the welfare measures.  

Our findings have general implications for the use of discrete response questions in 

contingent valuation survey.  Boyle’s [2003] recent comprehensive survey of best practice 

 
3 Recall that the semi-parametric model is a combination of a cubic smoothing spline function in the price (cost of a 
trip) variable and a parametric specification for all other variables. 



 
8

methods in using the contingent valuation concludes that while discrete response questions (and 

the need for logit and probit estimators to derive WTP estimates) appears to be the safe 

approach, “…it is not absolutely clear that the dichotomous choice questions clearly represent 

the best approach” (p. 142).  His summary suggests this strategy tends to lead to higher estimates 

for WTP when compared to other stated preference approaches for comparable changes in 

environmental resources.  Our results suggest this may be due to the relative inflexibility of the 

parametric estimators used to evaluate discrete response surveys.  Our bootstrapped sampling 

distributions suggest the cubic smoothing spline produces a tighter 90% confidence interval with 

the upper bound estimated WTP that was 62 and 74 percent of the values for the logit and probit 

estimates, respectively. Our findings conform with the literature that the conventional estimates 

are not as precise as the non-parametric with heteroscedasticity comparable to what might be 

expected in the important economic applications where these methods would be applied.
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Table 1: Benefit Estimates and Bootstrapped Distributions 

 
 

 
 

 
Logit 

 
Probit 

 
Semi-parametric 

WTP Estimate 2.124 2.033 2.179 
 
Meana

 
2.418 

 
2.290 

 
2.200 

 
STD 

 
1.354 

 
1.742 

 
0.364 

 
Median 

 
2.107 

 
2.019 

 
2.196 

 
Lower Boundb

 
1.351 

 
1.321 

 
1.593 

 
Upper Bound 

 
4.467 

 
3.705 

 
2.756 

 
aIt is the mean of the 500 bootstrapped average benefit estimates. 
bThe lower and upper bounds are created based on Efron's percentile method. They form a 
90% confidence interval for each of the benefit estimates. 
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APPENDIX A 

As a rule we can appeal to the Slutsky Theorem to establish that any continuous function 

of a consistent estimator is consistent.  The Theorem developed below (due to Cox and 

O'Sullivan [1990]) describes the specific norm that assures consistency for the penalized 

likelihood estimators.  We summarize their Theorem and the implications below. 

 

Theorem A:  Suppose m≥2 and f0∈W2
mp [0,1], where 3/(2m)<p≤1. If λn is a sequence such 

that λ→0 and for some α∈ (1/(2m),(p-1/(2m))/2], n-1λn
-2(α+1/(2m)) →0, then for 0≤b≤α, 
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f0 is the true function that maximizes L(f), the limiting function of Ln.
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According to the theorem, as the smoothing parameter goes to zero and n is large, the 

distance between the solution to (2) and the true function f0 is less than a small number with 

probability one.  A heuristic description is as follows. Suppose that fnλ is the unique maximizer of 

(2).  The difference between the unique maximizer of L, f0, and fnλ is the estimation error.  The 

estimation error consists of a systematic error and a stochastic error.  The two error components 

represent the bias and the sampling variabilities, respectively, as reflected in the following 
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equation. 

   fnλ - f0 = (fλ - f0) + (fnλ - fλ),       (A3) 

where fλ is the maximizer of ∫ ′′− dxffL 2)()( λ .  The difference between fλ and f0 is attributable 

to the addition of the penalty function; hence, it is a systematic error and is independent of the 

sampling.  The difference between fnλ and fλ is a random error due to sampling.  Cox and 

O'Sullivan [1990] analyzed both of these errors and the overall accuracy is the content of 

Theorem A. 

Consistency of the Proposed Welfare Measure 

With some additional assumptions, Theorem A can be used to show the consistency of 

the welfare measure developed from these estimates.  Considering the absolute difference 

between W(fnλ) and W(f0), 
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Formally, the expectation of WTP requires integrating the probability curve from -∞ to ∞.  In 

fact, a welfare measure is usually finite and positive (with rare cases that are negative) in that its 

distribution is truncated at some finite values.  If the welfare measure is assumed to be in a finite 

range [-N,M] where N and M are positive finite numbers, then the right-hand side of (A4) has 

finite integrals from -N to zero and zero to M.  This is a plausible assumption and it enables us to 

apply Theorem A. 

Since both ef+Z′γ/(1+ef+Z′γ) and 1/(1+ef+Z′γ) are monotonic functions, there exists a 

function f*(x)=βf0(x)+(1-β)fnλ(x), 0≤β≤1 and β=β(x) such that equation (A4) with the assumption 

of finite range [-N,M] can be rewritten as follows. 
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Notice that equation (A5) is derived by linearizing the logistic function at f0 and is not based on 

the intermediate mean value theorem. 

By the Cauchy-Schwartz inequality, 
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If the expected willingness to pay, W(f0), is finite, ∫ +
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is finite and can be set to be some constant.  It is seen that 
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    (because f* = φf0 + (1-φ)fnλ, 0≤φ≤1) 
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where C1, C2, and C are some fixed positive constants.  Thus, |W(fnλ)-W(f0)| is less than or equal 
to the norm of fnλ-f0.  That is, by setting b=0 in Theorem A, when the number of observations is 
large and the smoothing parameter is very small, |W(fnλ)-W(f0)| is less than some small number ε 
with probability equal to one.  The consistency of the welfare measure with finite range derived 
from the penalized likelihood function is verified. 
 



 
14

 
APPENDIX B.  Regression Results of the Choice Models 

 
Dependent Variable  
    = 1 if visited the site 
    = 0 if not Logit Probit 

Semi-
Parametric 

Intercept 2.299 1.260 1.519 
 (1.543)a (1.527) (1.072) 
    
Household Income $ -5.1x10-5 -2.7x10-5 -3.8x10-5

 (-3.248) (-3.019) (-2.420) 
    
Round Trip Costs $ -0.566 -0.348 -1.592b

 (-3.458) (-3.705)  
    
Boat Ownership (=1) 0.669 0.369 0.342 
 (1.537) (1.503) (0.805) 
    
Age -0.098 -0.055 -0.092 
 (-5.160) (-5.218) (-4.722) 
    
Years of School Education 0.261 0.149 0.164 
 (2.279) (2.348) (1.559) 
    
Part Time Worker (=1) 0.210 0.162 0.428 
 (0.425) (0.595) (0.887) 
    
Retired (=1) 1.701 0.966 1.424 
 (2.044) (1.988) (1.672) 

aNumbers in parentheses are the t statistics. 
bThe coefficient of Round Trip Costs is the average of first derivatives of the spline functions. 

 


